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Abstract—Biomedical signals are commonly used as a 

convenient solution of Human Computer Interface (HCI) 

for the disabled persons. Myoelectric control system is the 

fundamental component of modern prostheses, which uses 

the myoelectric signals from an individual’s muscles to 

control the prosthesis movements. For this purpose, surface 

electromyogram (SEMG) data collected from thirty 

participants using eight electrodes located on the human 

forearm is used. Various feature sets were extracted and 

projected in a manner that ensured maximum separation 

between different movements of hand and then fed to the 

four different classifiers. We have used Sparse Principal 

component analysis as feature projection which very 

profoundly discriminated the feature sets. The second 

contribution is the use of a majority voting algorithm post 

processing approach to maximize the probability of correct 

classification of the myoelectric data for different 

movements of forearms. Practical results and ANOVA tests 

proved the feasibility of the proposed approach with an 

average classification accuracy > 98% for different subjects 

forearm movements. The focus of this work is to optimize 

the configuration of the classification scheme. The SVM 

ensemble based limb motion classification system 

demonstrates exceptional classification accuracy and results 

in a robust method of motion classification with low 

computational load. 

 

Index Terms—Discriminant Locality Preserving Projections 

(DLPP), myoelectric control, Myoelectric Signal (MES), 

pattern classification, prosthesis, Sparse Principal 

Component Analysis (SPCA) 

 

I. INTRODUCTION 

Surface electromyogram (SEMG) signal is one of the 

most significant biomedical signals. The use of SEMG 

signal is simple, fast and convenient, hence widely 

studied and applied in clinic. It is generated by muscular 

contraction and can be recorded using surface electrodes. 

The noninvasive surface electromyogram (SEMG) signal 

provides information about neuromuscular activity and 

has become an important and effective control input for 

powered prostheses from last 40 years [1].  

                                                           
Manuscript received July 1, 2015; revised September 7, 2015. 

The loss of the human upper-limb, limits the ability of 

amputees to interact with the real world. The life of the 

amputees can be enhanced by restoring their ability to 

interact with the outer world. This can be made possible 

by using powered upper-limb prostheses. These 

prostheses derive their control command from 

myoelectric signals generated by the human muscles [2]. 

Generated by the human muscles, they muscles are 

used to derive control commands for powered upper-limb 

prostheses. 

A myoelectric control system has to be accurate, 

response time is such that delay is not perceivable by the 

user and intuitive interface relieves the mental burden by 

the user. Electrically powered prostheses with 

myoelectric control have many advantages over other 

types of prostheses. It can be routinely fitted to upper 

limb deficient clients for clinical evaluations of the 

functional benefits. The user is freed of straps and 

mechanical switch control. The muscle activity required 

to provide control signals is relatively small. 

Many myoelectric control systems are available 

capable of controlling a single device such as a hand, an 

elbow or a wrist in a prosthetic limb [3]. Many 

researchers have demonstrated the feasibility of 

myoelectric control for various feature sets and 

classification methods [4]-[7]. The surface EMG signals 

have been successfully utilized in decoding the intended 

forearm movements.  

Myoelectric control has been successfully utilized in 

rehabilitation and human-computer interfaces [8], [9]. 

The myoelectric signals acquired from healthy subjects 

can be considered as an emulation of the amputee’s 

command signals extending from the shoulder and 

intended for various hand movements. Moreover, the 

rehabilitation experts have suggested, for initial 

evaluation purposes, myoelectric signals from the healthy 

hand should be considered even in the case of the 

amputees [3], [4], [10], [11]-[13]. Also, the myoelectric 

signals may differ from one person to another as a result 

of different physiological and recording conditions. The 

large sample sizes do not mean that they will be more 

beneficial [14].  
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In the realization of myoelectric control, the key 

problem is to accurately recognize the user’s intent. From 

the last four decades, researchers have studied the 

classification of hand motions by sensing the activities of 

upper arm muscles and have succeeded with recognition 

rate more than 90 percent.  

To classify the acquired surface myoelectric signals 

into one of a predefined set of forearm movements, 

pattern recognition of the myoelectric signal is used. It 

plays a key role in advanced control of powered 

prostheses for individuals with amputations or 

congenitally deficient forearms [4]-[5]. The concept of 

employing pattern recognition for myoelectric signal 

control schemes was first developed in late 1960s or early 

1970s [15], [16]. First successful pattern recognition 

based approach offering real time performance and high 

accuracy was developed by Hudgins in 1993. The 

approach used Time Domain (TD) statistics with 

multilayer perceptron (MLP) neural network as classifier. 

Four types of limb motions were classified with an error 

rate around 10% [4]. This work incited a renewed interest 

in the pattern recognition based myoelectric control, and 

a great deal of work was ensued. These efforts have 

investigated the efficacy of various feature sets [18]-[20] 

(time-frequency and time-scale representations) and 

classifiers, Gaussian Mixture Models (GMMs) [17], self-

organizing neural networks [21], dynamic artificial neural 

networks [22], genetic algorithms [23], fuzzy logic [29] 

and Hidden Markov Model [25]. 

These systems exhibit high accuracy and are capable 

of being tuned to an individual user thus learning the 

characteristics of the MES activity accompanying their 

contraction efforts.  

The paper is constituted as follows: Section 2 

describes the data collection procedure, the feature 

extraction, feature set reduction, classification and post 

processing. Section 3 and section 4 presents the 

experimental results and discussion respectively and 

finally, conclusions are drawn in Section 5. 

II. METHODOLOGY 

We propose an EMG based forearm movement system 

that employs eight EMG electrodes placed on the surface 

of the human forearm. The goal is to employ effective 

feature reduction techniques and classifiers to increase 

the classification accuracy for identification of seven 

classes of forearm movements.  

The block diagram of the proposed system is shown in 

Fig. 1. Raw surface EMG signals were preprocessed and 

feature sets were extracted. From the extracted features 

sets SPCA and other feature reduction techniques OLDA, 

DLPP, LDB were used to project extracted features into a 

new feature set with enhanced discrimination ability. 

Suitable classifiers SVM ensemble, LDA, MLP and KNN 

were utilized to recognize the signals from different 

classes of the forearm movements. To eliminate spurious 

misclassification and minimizing the number of training 

patterns, majority voting was used that increased the 

classification accuracy. 

 

Figure1.  Block diagram of the myoelectric signal classification system 
for prosthesis control. 

A.  Data Collection 

The data utilized in this paper is same that is used in 

[26]. The surface electromyogram signals were collected 

from thirty subjects consisting of eighteen females and 

twelve males. Duo-trode Ag-AgCl eight electrodes were 

placed on seven sites of the forearm and on the bicep for 

collecting eight channels of myoelectric data. An Ag-

AgCl Red-Dot electrode was placed on the wrist as 

common ground reference. The signals were amplified 

with a gain of 1000 and bandwidth of 1 Hz to 1 KHz to 

be sampled at 3 KHz. 

Seven distinct forearm movements: hand open (HO), 

hand close (HC), supination (S), pronation (P), wrist 

flexion (WF), wrist extension (WE) and rest (R) were 

recorded. Within each trial, the subject repeated each 

forearm movements four times, holding each movement 

for duration of three seconds. The order of these 

movements was randomized. A five-second rest period 

was introduced at the start and end of each trial. Each 

session comprised of six trials and four such sessions 

were recorded.  

In the original research paper [26], data from only the 

fourth session was used. For the same reason, we have 

used data from the fourth session. The data from the first 

four trials were used for training data and the remaining 

two trials for testing. The Fig. 2 shows the placement of 

electrodes on the forearm. 

 

 
Figure 2.  Electrodes placement on the right forearm 

B. Feature Extraction 

Due to the stochastic nature of the EMG, an 

instantaneous sample contains relatively little information 

about the overall muscle activity, hence features should 
be chosen very cautiously. They are used to model and 

analyze raw electromyogram signals, so success of any 

classification problem depends almost entirely on the 
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selection and extraction of features. Instead of focusing 

upon the classifier, the authors have demonstrated in 

previous work that the classification performance is more 

profoundly affected by the choice of feature set [19]. 

They are usually computed from the preprocessed 

myoelectric signal in time, frequency and time-frequency 

domain using a sliding window approach. Either a 

disjoint or an overlapped windowing scheme is utilized. 

The overlapped windowing scheme produces better 

classification performance but it leads to higher 

computational costs in the training and the testing phase 

for certain classifiers [27]. Hence the selected window 

size and its increments, is chosen accordingly. 

Specifically, a wavelet-based approach exhibits 

superior performance in comparison to Hudgins’ time 

domain approach. The performance of Hudgins’ time 

domain feature set (TD), and the feature set based upon 

the Time Varying Auto Regressive model (TVAR), the 

short-time Fourier transform (STFT), the discrete wavelet 

transform (DWT), and the wavelet packet transform 

(WPT) were compared with the work of few previous 

researchers.  

For the STFT, a Hamming window of length 128 

points with an overlap of 50% gave the best performance. 

The DWT and WPT experienced the best performance 

when using a daubechis mother wavelet and a symmlet 

mother wavelet, of order four and five respectively.  

The feature set should be capable to capture the 

characteristics or properties of the MES for different limb 

motions. Consideration of the feature set must involve the 

computational load required; a tradeoff in accuracy and 

computational complexity does exist. In our work, 

features in the time, frequency and time -frequency 

domains have been extracted using sliding window 

techniques. In time domain, mean absolute value, root 

mean square of the EMG signal was calculated to extract 

basic amplitude information and AR modeling is 

performed. Features in the time domain are limited 

successful, myoelectric signal being non stationary. Some 

characteristic variables in power spectral density say 

mean and median frequency and small time Fourier 

transform is computed in the frequency domain but it is 

also not useful in multifunction myoelectric control [4]. 

Current advances in time-frequency analysis are crucial 

to understand the complexity of myoelectric signal. 

Discrete Wavelet Transform (DWT) and Wavelet Packet 

Transform (WPT) has been extracted which contains 

useful information in time and frequency domain. 

According to a basis function called wavelet function, 

DWT decomposes the original myoelectric signal into 

some multi-resolution components. The wavelet function 

is both translated and extended in time, undertaking a 

two-dimensional cross correlation with the time domain 

myoelectric signal. Also, there is no universal wavelet 

function, suitable to all types of signal. Hence, the 

selection of a wavelet function becomes an important 

factor to achieve optimal performance in the signal 

processing. WPT offers more range of possibilities for 

signal analysis than DWT [28]. 

Overlapping window of 256 ms was analyzed, which 

were spaced 128ms and 32 ms apart for training data and 

testing data respectively. To improve the accuracy, the 

transitional data 256ms before or after a change in limb 

motion was removed from the training set.  

 

Figure 3. Different movement classes considered in this paper 

C.   Feature Reduction 

Dimensionality reduction is an important process 

before classification is performed. LDA is a supervised, 

nonlinear dimensionality reduction technique. Unlike 

other nonlinear reduction methods, it provides a powerful 

mapping with less computational effort. The maximum 

class discrimination is achieved by maximizing the ratio 

of the between-class distance to the within-class distance. 

The classical LDA fails for under sampled problems 

where the data dimensionality is much larger than the 

size of the sample and all the scatter matrices are singular. 

Therefore we have employed orthogonal LDA (OLDA), 

which computes a set of orthogonal discriminant vectors 

via the simultaneous diagonalization of the scatter 

matrices. 

Orthogonal LDA (OLDA): All the extracted features 

formed one large feature set which were then reduced in 

dimensionality with the Orthogonal Linear Discrinminant 

Analysis (OLDA) feature projection. With c being the 

number of problem classes, maximum of c -1 feature can 

be produced here 7 numbers of features were produced 

[27]. The orthogonal transformation in OLDA can be 

solved by the following optimization problem. 

G = argmaxGεIR
m x l

: GTG =𝐼𝑙
𝑡𝑟𝑎𝑐𝑒((𝑆𝑡

𝐿)
+ 

𝑆𝑏
𝐿) where (𝑆𝑡

𝐿)
+ 

denotes pseudo-inverse [29] of (𝑆𝑡
𝐿 ). The orthogonality 

condition is imposed in the constraint. The computation 

of the optimal transformation of OLDA is based on the 

simultaneous diagonalization of the three scatter matrices 

[30], [31], [32].  

The application of OLDA is justified by the high 

variance nature of the myoelectric signal which causes 

the information to be liberally dispersed amongst the 

original feature set extracted from the EMG signals. 

Feature projection methods can consolidate such 

information more effectively than feature selection based 

methods in EMG signals classification problems [18]. 

Further, in [29], [33] the performance of OLDA against 

that of nonlinear projection methods was compared. Also 

OLDA has low computational cost compared to nonlinear 

projection methods. 

Sparse PCA (SPCA): Principal component analysis 

(PCA) is commonly used in data processing and 
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dimensionality reduction. In PCA, it is difficult to 

interpret the results as each principal component is 

formed by linearly combining all the original variables. 

The fact that PCA does not consider the class label in the 

projection process limits the performance of PCA when 

compared to other projection methods. Sparse Permanent 

component analysis (SPCA) is considered as a 

combination of feature selection and projection. SPCA 

provides a means of unsupervised dimensionality 

reduction, as no class membership qualifies the data 

when specifying the eigenvectors of maximum variance 

[13].  

es the 

lasso (elastic net) to produce modified principal 

components with sparse loadings. It allows flexible 

control on the sparse structure of the resulting loadings. 

As a principled procedure, it is computationally efficient, 

has high explained variance and ability in identifying 

important variables. It maximizes the variance explained 

by a linear combination of the input variables, but 

simultaneously constrains the number of nonzero 

coefficients. We have used it to find a subspace whose 

basis vectors correspond to the maximum-variance 

directions in the original space [34].  

In addition to SPCA we have also used Discriminant 

Locality Preserving Projections (DLPP), Orthogonal 

Linear Discriminant analysis (OLDA) and Local 

Discriminant Bases (LDB) as feature reduction or 

projection techniques. The performance of DLPP and 

OLDA were almost similar. Fig. 4 shows the 

classification accuracy for different classifiers.  

D.  Classification 

Myoelectric signal classification for prosthetic control 

is a difficult problem, as the myoelectric signal is random 

in nature due to the complex strategies of motor unit 

firing and recruitment inherent in neuromuscular control 

strategies. Several factors must be considered for 

choosing a classifier for the myoelectric signal 

classification applications. A suitable classifier must be 

accurate enough to generalize well the novel data and 

capable of being optimized to suit the unique patterns 

generated by individual users. It is essential that it should 

be computationally efficient in the act of classifying 

novel patterns, as it must satisfy the real-time constraints 

of myoelectric control. It is not necessary that it should 

be capable of being trained in a reasonable amount of 

time [25].  

The LDA and the MLP are easily implemented and 

well understood representatives of statistical and neural 

classifiers respectively. Although some classifiers 

demonstrate obvious advantages over others but is the 

feature set that most dramatically affects the 

classification performance, and this is our main focus in 

this work.  

SVM Ensemble: A SVM is an intelligent learning 

method and is the core of classification in myoelectric 

control. It has high accuracy, robust performance, and 

low computational load but suitable for two-class 

classification. In Ensemble learning multiple learners are 

trained to solve the same problem. It tries to construct a 

set of hypotheses and combine them to use. Since an 

ensemble contains a number of base learners, its 

generalization ability is much stronger than that of base 

learners.  

In 1995, Krogh indicated that the generalization error 

of ensemble is equal to average generalization error of 

individual SVMs minus the average differences of 

individual SVMs. Therefore, to enhance the 

generalization performance, we should not only 

maximize the generalization ability of individuals, but to 

also increase the differences between the various 

individuals. 

In this paper, we have used an ensemble algorithm 

based on bagging [35] and culture algorithm [36]. The 

base learners of high difference are generated by bagging 

method which is a re-sampling the training data 

technology. The generalization performance of some 

selected base learner ensemble is better than all of the 

base learners [37]. Some base learners with high accuracy 

and large differences are selected by CA to ensemble. 

The method uses multiple versions of a training set by 

using the bootstrap, i.e. sampling with replacement. Each 

of these datasets is used to train a different model. The 

outputs of the models are combined by voting to create a 

single output.  

Using a base learning algorithm, bagging trains a 

number of base learners each from a different bootstrap 

sample. The size of a sample is same as that of the 

training data set and it is obtained by sub sampling the 

training data set with replacement. For a bootstrap sample, 

the probability that an example appears at least once is 

0.632. After obtaining the base learners, bagging 

combines them by majority voting and the most-voted 

class is predicted. The pseudo-code of Bagging is as 

follows. 

Data set D = {(x1, y1), (x2, y2), … (xn, yn),}; 

Base learning algorithm L; 

Number of learning rounds T 

Process: for t=1,…,T 

Dt = Bootstrap (D); % Generate a bootstrap sample from 

D 

Ft = L (Dt) % Train a base learner ht from the bootstrap 

sample  

end 

Output: f(x) = argmaxy ∈ Y ∑ 1𝑇
𝑡=1  (y= ft(x)) % the value 

of 1(a) is 1 if a is true and 0 otherwise 

In a cultural algorithm, there are two main spaces: the 

normal population adopted with evolutionary 

programming and the belief space. The shared acquired 

knowledge is stored in the belief space during the 

evolution of the population. The acceptance function 

accepts those individuals that can contribute with their 

knowledge to the belief space. The update function 

creates the new belief space with the beliefs of the 

accepted individuals. The idea is to add to the current 

knowledge the new knowledge acquired by the accepted 

individuals. The function to generate offspring used in 

evolutionary programming is modified so that it includes 

the influence of the belief space in the generation of 

offspring [38].  
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E.  Post Processing 

With the overlapped windowing scheme very dense 
decision stream is produced and decisions are made more 
frequently than the required response time of prosthesis. 
Post processing techniques are usually utilized after 
classification to prevent overwhelming the prosthetic 
controller with varying classification decisions. By 
eliminating spurious misclassification, the classifier 
performance is enhanced [3]. The EMG classification 
accuracies are usually smoothed using a majority vote 
(MV) technique. In a MV scheme, an acceptable delay of 
256 ms and an overlapped windowing increment in the 
test session is used. The number of decisions used in the 
majority vote is determined by the processing time Tprocess 

(time consumed during feature extraction, projection and 
classification) and the acceptable delay Tdelay (the 
response time of the control system). We can use the 
previous decisions, the current decision and the future 
decisions to form the MV. For a given decision point di, 
the majority vote decision dmv includes the previous m 
decisions and may also include the future m decisions 
(with m satisfying the inequality of m×Tprocess≤ Tdelay [3]. 
The value of dmv is simply the class label with the 
greatest number of occurrences in the 2m+1 decisions. 

If the queue does not have m decisions then the system 

can just implement the voting between the current and the 

available number of votes in the queue without having to 

wait for more decisions to be generated. In such a case, 

the system might show some errors, especially at the 

transitions, unless the subject is well trained to exhibit the 

same patterns for the specific hand movement [27].  

III. RESULTS 

The classification accuracy was computed using three 

feature reduction techniques before and after post 

processing i.e. using majority voting. The performance of 

SPCA was comparable to OLDA hence there was minor 

difference in the classification accuracies. 

 

Figure 4a.  Using the validation set with extracted features 

 

Figure 4b.  Using the Testing set with extracted features 

The system has been shown to be very accurate in 
discriminating seven classes of movements. The response 
was computed averaged across all subjects for different 
classes using each classifier individually. Fig. 5 shows 
the validation and testing sets using WPT feature and 
SVM ensemble as the classifier. It also depicts the 
performance of OLDA is comparable to DLPP. 

 

Figure 5a.  Using validation set with WPT feature 

 

Figure 5b.  Using the testing set with WPT feature 

We also find out the performance of classifiers for 
each of the feature reduction projection techniques 
separately for time and frequency domain features 
combined (TD+FD), time varying Autoregressive (TVAR) 
model of 4

th
 order, STFT, DWT and WPT. 

 

Figure 6a.   Classification accuracy averaged across different features 
using SPCA 

 

Figure 6b.  Classification accuracy averaged across different features 
using OLDA 
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Figure 6c.  Classification accuracy averaged across different features 

using LDB 

 

Figure 6d.  Classification accuracy averaged across different features 
using DLPP 

 

Figure 7.  Classification accuracy with number of features per channel 

As the number of features per channel increased 

irrespective of the type of features, more number of 

features per channel gave more accurate results. The 

SVM ensemble gave the best result with an accuracy of 

99%. To which extent classification performance can be 

improved with additional channels of myoelectric activity. 

The response was averaged across all subjects, by 

empirical analysis and it was observed that more numbers 

of channels do not profoundly affect the classifier 

performance. Fig. 7 shows four number of channels are 

sufficient, after that the performance starts decreasing. 

The classification accuracies with random 

combinations of three, four, five, six- and seven class 

subsets were obtained. Fig. 8 depicts one set of 

combination with all the classifiers. SVM ensemble 

outperformed all other classifiers. Accuracy increased 

with increase in number of classes but depending upon 

the type of classifier used. 

 

Figure 8.  Number of classes verses classification accuracy 

The effect of different length of windows of 

myoelectric signals was computed against the achieved 

classification accuracies. The window lengths taken into 

consideration were 128, 256, 384 and 512ms. Four 

different classifiers were utilized to demonstrate the 

effectiveness of the projected features that are mutually 

uncorrelated. The classification accuracy was greater than 

98% for 256 ms window length with SPCA as feature 

projection and SVM ensemble as the classifier. Larger 

length of window was not effective. The performance of 

LDB was comparable to SVM. With no majority voting 

128ms analysis window provided the best combinations 

of computational efficiency and classification accuracy. 

Fig. 10 shows that error percentage with and without 

majority voting with 256 ms window. 

 

Figure 9.  Classification accuracy for 256 ms window for different 
feature reduction techniques 

The geometric mean error ratio measures the relative 

performance of one method to another. In Table I all the 

values are less than 1, indicating that WPT outperforms 

all the other method in terms of error reduction. The 

result was computed over 30 iterations. 

TABLE I.   GEOMETRIC MEAN ERROR RATIO
 

WPT vs MAV RMS 
Mean 

frequency 

Median 

frequency 

TVAR STFT DWT 

SVM 
ensemble 

.26 .41 .35 .23 .48 .28 .35 

LDA .49 .62 .57 .91 .42 .16 .72 
KNN .62 .76 .8 15 .67 .72 .15 
MLP .65 .67 .81 .42 .32 .89 .46 
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Figure 10.  Error percentage with 256 ms window 

A one-way analysis of variance (ANOVA) was used 

to help us to decide if the differences in the achieved 

error rates among various methods are attributed to the 

advantages and disadvantages of each method. The 

significance level was set to value α = 0.05 and the 

corresponding results are shown in Table II. It is clearly 

indicated in the table that performance of LDB is superior 

to all other techniques.  

TABLE II.   RESULT OF ONE WAY ANOVA TEST 

LDB vs ρ value 

SPCA .0085 

OLDA .0286 

DLPP .0278 

Here different wavelet families the Symmlet, Coiflet 

and Daubechis of order 5, 5 and 4 respectively were 

employed. The decomposition level was made 6 for both 

the methods and SVM ensemble was used as classifier. 

Leave-one-out cross validation was employed for testing, 

as the number of samples being small. Table III shows 

the corresponding error rates achieved by classifier. 

TABLE III. NUMERICAL VALUES OF THE ACHIEVED ERROR RATES 

Features Sym5 Db4 Coif5 

DWT 11.18 5.23 21.16 

WPT 1.54 8.63 11.52 

IV. DISCUSSION 

The covariance structure is removed, by projecting the 

feature sets onto the orthonormal axes of maximum 

variance. If the original feature space possesses 

significant linear dependencies then lesser principal 

components can be discarded with little loss of 

information. In the original feature sets, the information 

is liberally dispersed; therefore, a SPCA will consolidate 

this information much effectively than other feature 

selection methods. There is significant degree of linear 

dependency amongst coefficients of the STFT, the DWT 

and the WPT, in the high-dimensional space. The loose 

structure of the transient myoelectric signal subtends a 

substantial degree of within-class dispersion in the time-

frequency domain. SPCA appears to effectively 

accommodate these effects. The improvement that SPCA 

offers to TD features is not as pronounced as to the TFR 

sets, as the original dimensionality is relatively low. For 

TFR feature sets subject to SPCA, the LDA classifier 

occasionally shows better generalization performance 

compared to the MLP classifier. Despite of the fact that 

the MLP is being capable of prescribing nonlinear class 

boundaries, thus encompasses the capabilities of the LDA.  

With the increase in dimensionality of the feature set, 

the degree of nonlinearity between class boundaries must 

diminish. In the high dimensional feature space of TFRs, 

a significant degree of linear dependency exists. The 

SPCA preserves the linearity that exists between classes 

while projecting the TFR coefficients onto a relatively 

low dimensional space. The fact that the SPCA-projected 

TFR features have reasonably linear class boundaries and 

that they have relatively low dimension diminishes the 

advantage that a MLP may have over a LDA. 

The performance of MLP can be made comparable to 

LDA with appropriate number of hidden layer nodes and 

properly trained. For a given subject if the size of the 

MLP is inappropriate, the network may be over trained or 

undertrained and will reduce the generalization 

performance of the MLP. The LDA does not learn from 

its architecture or training algorithm being unsupervised, 

even then it consistently performs very well. The added 

advantage of SPCA over MLP classifiers is lesser 

training time. The added advantage of SPCA is that the 

back propagation algorithm is speedup as the Hessian 

matrix of the cost function is more diagonalized than 

usual. Along each weight axis, is independently 

generated an appropriate scaling of the learning rate [20].  

TABLE IV.  COMPARISON BETWEEN PROPOSED SYSTEM AND THE 

WORK OF OTHER RESEARCHERS 

Researchers Classifiers Features Classification 
accuracy  

Reference 

Hudgins et al ANN Time domain  70-98 % [4] 

Engle hart  
et al 

ANN & LDA Time 
frequency  

87-94% [3], [10] 

Lee et al Baye’s 

Classifier 

ZC variance 91% [39] 

Graupe et al Nonlinear 
discriminants  

AR model 
coefficients 

99% [12] 

Khezri et al ANFIS TFRs & TD 86-100% [14] 

This work ANN & LDA TFRs, AR & 
TD 

95-98%  

Table IV presents the results of the comparison of our 

work with the other researchers. The results indicate that 

the combinations of the eight features and using SVM 

ensemble as a classifier provide a suitable SEMG pattern 

identifier in recognizing the forearm movement. Based on 

the level of complexity and rate of correctness, the 

proposed analytical system proves to be superior. Table 

IV depicts our overall results for the seven classes of 

forearm movements show a marked improvement over 

the previous studies. 

V. CONCLUSION 

The primary goal of this paper was to compare the 

pattern recognition classification accuracies and to 

explore the pattern recognition algorithms which can be 
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utilized within the prosthesis device controllers. These 

intelligent pattern recognition models will enhance the 

life of amputees and help them to restore their ability of 

interacting with the outer world. 

The classification of myoelectric signal depended on 

the domains from which features were extracted. The 

classifier exhibited very good accuracy with TFRs 

features but the way in which feature sets were projected 

mattered most. The performance was more accurate with 

four channels and it started deteriorating as more number 

of channels was introduced. In our work, the individual 

SVMs were aggregated to make a collective decision 

using majority voting which outperformed the other 

classifiers. The highest accuracy was obtained with 

feature sets utilizing all signal features, but WPT 

outperformed all other features.  
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