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Abstract—The algorithm based physiological characteristics 

of driver drowsiness – ocular parameters (derived from the 

frontal electroencephalogram (EEG)), EEG alpha bursts 

and spectral power (derived from the central and occipital 

sites) as well as heart rate variability (HRV) were estimated 

from data derived during a driving simulator experiment 

(30 non-professional drivers). The statistical associations of 

these parameters with the “gold standards” of driver 

drowsiness were investigated using linear regression and 

linear mixed models. The statistical models were also 

examined for a number of hybrid algorithms, which 

combined multiple characteristics of driver drowsiness. A 

combination of ocular parameters showed the strongest 

association (R2=0.48) with the applied trained observer 

rating (TOR) method; followed by EEG alpha bursts 

indicators (R2=0.30) and EEG spectrum data (R2=0.21). The 

HRV parameters showed a weak association (R2=0.04) A 

joint model including the eye parameters and the EEG 

alpha bursts resulted in the highest R2=0.54 to TOR. The 

results indicate that a hybrid automatic algorithm, based on 

multiple characteristics of the eye blinks and EEG patterns, 

but not necessarily including the HRV measures, is likely to 

achieve a level of accuracy in characterising driver 

drowsiness similar to that of a trained observer. 

 

Index Terms—driver, drowsiness, fatigue, physiological, 

EEG, alpha bursts, eye behaviour, automatic, hybrid 

 

I. INTRODUCTION 

Driver drowsiness and fatigue are universally 

recognized risk factors for road safety [1]-[3]. A sleep 

deprived driver (17 hours without sleep) shows similar 

effects as having a blood alcohol concentration of about 

0.05% [4]. Subsequently, a number of road accidents can 

be avoided by installing an adequate automatic 

drowsiness counter measure system in a vehicle. 

Over the last decades several methodologies have 

emerged to detect driver drowsiness. Ocular parameters 

have been shown to have a strong correlation with the 

states of drowsiness [5], [6]. PERCLOS (percentage of 

eye closure over the pupil over time) is a broadly 

accepted marker of drowsiness [7]. It was validated using 
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EEG data and expert rating of drowsiness [8]. In addition 

to PERCLOS the other promising ocular correlates of 

driver drowsiness include average eye closure speed, 

amplitude/velocity ratio as well as blink duration [9], [10]. 

EEG signals are currently widely used to measure 

drowsiness [11], [12]. The EEG alpha activity (8-13Hz), 

manifesting itself as short bursts particularly in the 

occipital or central areas, is known to be associated with 

drowsiness [13]. Our previous research have also 

demonstrated that EEG alpha burst as well as spectral 

analysis in the alpha band are useful practical indicators 

of drowsiness [14], [15]. 

The heart rate and the heart rate variability (HRV) 

have also been used to identify drowsiness due to their 

links with changes in autonomic nervous system activity 

during transition from an alert to a drowsy state. It has 

been observed that drowsy drivers show a lower heart 

rate [16], [17]. The HRV can be analysed by frequency-

domain techniques; mainly into three bands: high 

frequency (HF, 0.15 to 0.4 Hz) band, low frequency (LF, 

0.04 to 0.15 Hz) band as well as very low frequency band 

(VLF, 0.0033 to 0.04 Hz). The reduction in the LF/HF 

ratio as well as increase in the HF power are hereby 

relevant prospective indicators of drowsiness and sleep 

onset [18]-[20]. 

This paper presents the first, novel attempt to extract 

fully automatic, physiological pattern based indicators of 

driver drowsiness utilising eye parameters, EEG 

waveforms and patterns as well as HRV measures, and 

subsequently statistically evaluate the associations 

between the above indicators and non-physiological ‘gold 

standards’ of drowsiness. The objective of the presented 

research is to identify individual contributions of the 

ocular, EEG and HRV parameters for characterisation of 

driver drowsiness and quantify potential accuracy of a 

hybrid drowsiness detection algorithm by using multiple 

regression models. 

II. METHODS 

A. Driving Simulator Study and Data Acquisition 

Driving simulator data were collected by Karrar [21] 

during an earlier study conducted by Compumedics Ltd, 
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Australia in association with the University of 

Technology, Sydney. The study took place after a regular 

night of sleep commencing at 2:46 pm ± 33min with data 

obtained for up to 2.5 hours per driver. The following 

recordings were obtained: EEG (Fp1 (frontal-polar), Fp2, 

T7 (temporal), T8, P7 (parietal), P8, C4 (central) and O2 

(occipital); reference A1 and A2 (auricular)) & EOG 

(electro-oculogram) (as per the standard international 10-

20 system introduced by [22]), electrocardiogram (ECG), 

breathing (using a thoracic band) lateral lane position and 

video images of the driver’s face, steering wheel and 

driving scenery. The study included 30 non-professional 

drivers (age 20-60 years, healthy) and was conducted at 

the Monash University Accident Research Centre 

(MUARC), Melbourne. The physiological data were 

recorded using the Siesta Physiological Monitoring 

System (Compumedics, Australia).  

The video images of the participants were used as a 

reference to evaluate driver drowsiness. The applied 

Trained Observer Rating (TOR) was based on the scale 

by Wierwille and Ellsworth [23] and contains five 

drowsiness levels: Alert, Slightly Drowsy, Moderately 

Drowsy, Significantly Drowsy and Extremely Drowsy 

(see Table I). The state of drowsiness was visually 

assessed within a 10s interval. 

TABLE I.  TRAINED OBSERVER RATING (TOR) BASED ON A SCALE 

BY WIERWILLE AND ELLSWORTH [23] 

Level Drowsiness 

State 

Video image indicators 

0 not drowsy Normal fast eye blinks, often reasonably regular; 

Apparent focus on driving with occasional fast 
sideways glances; 

Normal facial tone; 

Occasional head, arm and body movements. 

1 slightly 

drowsy 

Increase in duration of eye blinks; 

Possible increase in rate of eye blinks; 

Increase in duration and frequency of sideway 
glances; 

Appearance of “glazed eye” look; 
Appearance of abrupt irregular movements – 

rubbing face/eyes, moving restlessly on the 

chair; 
Abnormally large body movements following 

drowsiness episodes; 

Occasional yawning. 

2 moderately 

drowsy 

Occasional disruption of eye focus; 

Significant increase in eye blink duration; 
Disappearance of eye blink patterns observed 

during alert state; 
Reduction on degree of eye opening; 

Occasional disappearance of facial tone; 

Episodes without any body movements. 

3 very 

drowsy 

Discernable episodes of almost complete eye 

closure, eyes never fully open; 
Significant disruption of eye focus; 

Periods without body movements (longer than 

for level 2) and facial tone followed by abrupt 
large body movements. 

4 extremely 

drowsy 

Significant increase in duration of eye closure; 

Longer duration of episodes of no body 
movement followed by large isolated 

“correction” movements. 

B. Spectral EEG Analysis 

After applying a band-pass filter (0.3-35Hz) the 

spectrum of the recorded EEG channels was computed 

using the short-time Fourier transform (hamming 

window=1s, overlap=0.75s). Four different band-power 

spectra (delta: 0.5-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 

13-35Hz) were then extracted and the relative 

contribution of the frequency bands, in particular the 

alpha band, to the total power (Pdelta+Ptheta+Palpha+Pbeta) 

was calculated. The next step included the determination 

of the following input parameters for the regression 

model: 

 Average alpha power spectrum ratio (APSR) from 

the C4 and O2 channels over a 30s period 

 Maximum alpha power spectrum ratio (MPSR) 

from the C4 and O2 channel over a 30s period 

The parameters were adjusted by subtracting the 

average of the initial 15min drive from the subsequent 

values. 

C. Alpha Burst Detection 

The applied C4 and O2 channels are filtered (0.3-35Hz) 

and then analysed by a proprietary pattern matching 

algorithm written in Matlab (R2011a) to determine the 

following characteristics of alpha bursts (AB) for a 

minimum of four waves: 

 Total duration;  

 Number of individual EEG waves within an alpha 

burst; 

 Amplitude similarity parameter (measure of 

similarity of the amplitudes of individual EEG 

waves within an alpha burst ); 

 Duration similarity parameter (measure of 

similarity of the durations of individual EEG 

waves within an alpha burst ); 

 Noise index (measure of “cleanness” of the alpha 

burst from contribution of background noise to the 

signal) 

 Mean amplitude (average of peak to peak 

amplitude) 

 Relative amplitude (ratio of mean amplitude of 

alpha burst to mean amplitude signal 2 s prior to 

the onset of alpha burst) 

The parameters were normalised by subtracting the 

average data of the initial 15min drive from the 

subsequent values. The alpha-burst parameters were then 

averaged within a 30s segment. 

D. Eye Parameter Detection (Algorithm Based) 

The proprietary Matlab (R2011a) based algorithm 

determined automatically short eye blinks as well as long 

eye blinks/movements (see Fig. 1) using the Fp1/A2 

channel. The algorithm detects blinks shorter than 0.5 s 

accurately but does not distinguish between blinks and 

eye movements longer than 0.5 s, which cannot be always 

differentiated using visual analysis of frontal EEG (Fp1-

A2). However, the majority of longer blink/eye 

movement patterns were long blinks rather than eye 

movements. The following eye parameters were obtained: 

 Blink duration for the short blinks (<0.5 s) as well 

as long blinks/eye movements; 

 Blink rate for the short blinks and long blinks/eye 

movements; 
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 Blink amplitude for the short blinks and average 

blink amplitude for long blink/ eye movement; 

 Eye closure duration (ECD) for the short blinks 

and long blinks/eye movements; 

 Eye opening duration (EOD) for the short blinks 

and long blinks/eye movements; 

 Average Eye Closure Speed (AECS) for the short 

blinks and long blinks/eye movements 

The eye parameters were then averaged within a 30s 

time interval. 

 

Figure 1.  Automatically detected short blinks and long blink 

E. Manual Scoring of Eye Parameters 

The channel Fp1/A2 was visually inspected and the 

duration of eye blinks were marked (as shown in Fig. 1). 

F. Determination of Heart Rate Variability 

The polysomnographic software ProFusion 4.0 

(Compumedics Ltd, Australia) determined the R-R 

intervals from the ECG. The HRV measures were 

subsequently calculated by an algorithm programmed in 

Matlab within a 5min window. The following parameters, 

which are considered to be the most relevant indicators of 

drowsiness and sleep stages [20], were obtained: 

 High frequency (HF) 

 LF/HF ratio 

However, despite selecting a window of 5min, the 

spectral analysis produced a lot of invalid data due to the 

small number of R-R intervals within the respective 

window. The HRV data were generated every 30s for a 

window of 5min. 

G. Statistical Analysis 

The statistical analysis was computed by the statistical 

software package Stata (StataCorp, USA). A linear 

regression model [24] was applied and the R
2 

coefficient 

(interpreted as relative measure of variation in the 

outcome variable attributable to the explanatory variables) 

was computed using the mentioned parameters above as 

independent variables. The references TOR as well as 

standard deviation of lane position (SDLP) were the 

outcome variables to explore associations between the 

parameters of interest and driver drowsiness. The Stata 

function regress was used.  

To take into account potential correlation between 

multiple observations for the same subject linear mixed 

model was also fitted to the same observations (Stata 

function xtmixed) [24], Subsequently the findings of 

linear regression and linear mixed models were compared 

to verify if the identified associations between the 

physiological indicators of drowsiness the “gold standard 

of drowsiness”, and the respective R
2 

values were still 

valid after potential correlation was considered.  

III. RESULTS 

A. Single Parameter Predictors of Drowsiness 

Table II provides an overview of the investigated 

drowsiness predictors. The strongest R
2
 can be seen in the 

eye parameters, followed by the alpha bursts indicators. 

The spectral EEG parameters appear weaker than the 

alpha bursts. The weakest association can be found in the 

HRV data, where in addition the linear mixed model is 

not significant in relation to the reference TOR.  

The channel O2 in both spectral and alpha burst 

parameters showed a stronger R
2
 than C4. The EEG 

indicator MPSR in both channels had a higher R
2
 value 

compared to APSR. The alpha burst relative amplitude 

appears to have a slightly stronger association with TOR 

than the duration of alpha bursts. The blink durations, 

especially the eye closing duration, showed the best 

goodness of fit out of all eye parameters.  

On the basis of these results important and significant 

drowsiness predictors were selected for further analysis, 

in particular to use as inputs for multiple regression 

models. 

B. Parameters Based on Spectral EEG Analysis 

The parameters MPSR in the EEG alpha band for the 

channels C4 and O2 were used in a regression model and 

showed a contribution of R
2
=0.21 (Table III). The 

variables APSR as mentioned in section II B. were 

excluded from the model because the p-values 

were > 0.05. In addition, MPSR showed a significantly 

stronger association than APSR in both channels. MPSR 

C4 alone had a significant association of R
2
=0.15 and 

MPSR O2 of R
2
=0.2. 

C. Combined Alpha Burst Parameters as Dowsiness 

Indicators 

A linear regression model was used to show 

associations between characteristics of alpha bursts 

extracted from C4 & O2 and certain levels of drowsiness 

using the TOR scale as a reference. The model consists of 

only significant covariates (duration, mean amplitude and 

relative amplitude) and reached a goodness of fit R
2
=0.30 

(see Table II). The estimated values of the regression 

coefficients were all positive except for the mean 

amplitude (for C4 & O2). 

D. Spectral EEG Analysis and Alpha Bursts Combined 

The addition of the parameters from the EEG alpha band 

to the alpha bursts variables did not increase the overall 

R
2
. 

E. Computer Generated Eye Parameters as Drowsiness 

Indicators 

The significant eye parameters: average duration blink 

(<0.5s), total duration blink / eye movement, ECD 

blink/eye movement, AECS blink/eye movement and 

amplitude blink/eye movement contributed to the linear 
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regression model with R
2
=0.48 (see Table III). As 

expected, the characteristic duration increased whereas 

AECS as well as amplitude decreased with the level of 

drowsiness. 

TABLE II.  SINGLE DROWSINESS PREDICTORS AND STRENGTH OF ASSOCIATION WITH TOR AND SDLP. THE SIGNIFICANCE VALUES ARE GIVEN FOR 

BOTH: LINEAR REGRESSION MODEL AND LINEAR MIXED MODEL. 

Drowsiness Predictor TOR SDLP 

 LRM LMM LRM LMM 

 p-value t R2 p-value z p-value t R2 p-value z 

TOR N/A <0.001 31.07 0.17 <0.001 25.83 

EEG APSR C4 <0.001 23.58 0.11 <0.001 26.37 <0.001 10.94 0.03 <0.001 8.78 

EEG MPSR C4 <0.001 27.63 0.15 <0.001 31.88 <0.001 11.32 0.03 <0.001 10.21 

EEG APSR O2 <0.001 26.96 0.14 <0.001 30.73 <0.001 10.40 0.03 <0.001 10.38 

EEG MPSR O2 <0.001 32.86 0.20 <0.001 35.99 <0.001 11.92 0.03 <0.001 11.74 

AB Duration C4 <0.001 25.51 0.13 <0.001 24.03 <0.001 12.15 0.04 <0.001 7.88 

AB Duration O2 <0.001 35.70 0.22 <0.001 35.42 <0.001 13.47 0.04 <0.001 13.48 

AB Mean amplitude C4 <0.001 26.31 0.14 <0.001 26.07 <0.001 10.81 0.03 <0.001 8.37 

AB Mean amplitude O2 <0.001 28.72 0.16 <0.001 29.54 <0.001 8.93 0.02 <0.001 9.09 

AB Relative amplitude C4 <0.001 30.08 0.17 <0.001 27.84 <0.001 11.61 0.03 <0.001 8.61 

AB Relative amplitude O2 <0.001 35.94 0.23 <0.001 34.72 <0.001 10.23 0.03 <0.001 9.92 

Blink average duration <0.5s <0.001 47.39 0.30 <0.001 37.44 <0.001 19.64 0.07 <0.001 10.65 

Blink/eye movement total 

duration ≥0.5s 
<0.001 39.61 0.23 <0.001 37.92 <0.001 21.43 0.09 <0.001 17.22 

Blink/eye 

movement 

duration 
combined 

Blink average 

duration <0.5s 
<0.001 37.48 

0.39 

<0.001 31.01 <0.001 13.60 

0.12 

<0.001 6.88 

Blink/eye 
movement total 

duration ≥0.5s 

<0.001 28.36 <0.001 31.62 <0.001 15.99 <0.001 15.11 

Blink rate for Blinks <0.5s <0.001 -16.78 0.05 <0.001 -14.73 <0.001 -17.77 0.06 <0.001 -13.43 

Blink rate for Blinks/eye 
movements >0.5s 

<0.001 22.33 0.22 <0.001 19.38 <0.001 11.88 0.09 <0.001 9.17 

Blink/ eye movement ECD <0.001 48.73 0.31 <0.001 43.58 <0.001 21.96 0.09 <0.001 16.96 

Blink/ eye 
movement EOD 

<0.001 37.18 0.21 <0.001 31.80 <0.001 15.59 0.05 <0.001 9.70 

Blink/eye movement AECS <0.001 -32.72 0.17 <0.001 -46.16 <0.05 -17.69 0.06 <0.001 -17.57 

Blink/eye movement 

amplitude normalized 
<0.001 -19.46 0.08 <0.001 -21.42 <0.001 -6.28 0.01 <0.001 -9.20 

HRV HF adjusted <0.001 -3.52 0.02 <0.001 -1.97 0.83 -0.22 0.00 <0.001 -0.06 

HRV LF/HF ratio adjusted <0.001 -3.26 0.01 <0.001 1.22 <0.001 -7.52 0.08 <0.001 -4.98 

 

F. Visually scored Eye Parametrers as Drowsiness 

Indicators 

The strength of association for the logarithm transform 

of duration of eye blinks/movement reached R
2
=0.46 and 

was therefore larger than the association based on 

automatically detected equivalent eye parameters 

(R
2
=0.39). However, only the blink duration was derived 

from visual scoring and could therefore serve as a single 

drowsiness predictor. 
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G. HRV Drowsiness Indicators 

A linear regression model was applied using the 

normalized HRV data HF and LF/HF ratio, which 

reached a goodness of fit R
2
=0.04 (see Table III). Both 

covariates for the linear regression model were significant. 

However, the number of observations dropped by a factor 

of 6 in comparison with the analysis of alpha bursts and 

eye parameter due to many invalid data. In addition, the 

linear mixed models for HF as well as LF/HF ratio, in 

relation to TOR, were not significant (see Table II). 

Based on these findings, HRV data were not included in 

the overall regression model, described in the next section. 

TABLE III.  COMBINATION OF PARAMETERS AND THEIR STRENGTH OF 

ASSOCIATION TO TOR AS WELL AS SIGNIFICANCE BASED ON LINEAR 

REGRESSION MODEL 

Drowsiness Predictor Reg. Coefficient t p R2 

EEG Alpha Band Normalized 

MPSR C4 1.179 [0.928; 1.430] 9.21 <0.001 

0.21 
MPSR O2 2.034 [1.824; 2.244] 18.97 <0.001 

Alpha Bursts Normalized (minimum four waves) 

Duration C4 0.102 [0.052; 0.151] 3.09 <0.001 

0.30 

Duration O2 0.304 [0.229; 0.379] 7.70 <0.001 

Mean amplitude C4 -0.017 [-.022; -0.011] -5.36 <0.001 

Mean amplitude O2 -0.016 [-0.022; -0.010] -5.48 <0.001 

Relative amplitude C4 0.649 [0.521; 0.778] 9.77 <0.001 

Relative amplitude O2 0.587 [0.477; 0.696] 10.38 <0.001 

Spectral EEG Analysis and Alpha Bursts combined 

Parameters EEG alpha band and alpha bursts (as above) 0.30 

Eye Parameter (algorithm based) 

Average duration 
blink<0.5s 

4.398 [4.030; 4.766] 23.42 
<0.001 

0.48 

Total duration blink/eye 

movement ≥0.5s 

0.056 [0.047; 0.064] 13.17 <0.001 

ECD blink/eye 

movement 

1.946 [1.572; 2.321] 10.19 <0.001 

AECS blink/eye 

movement 

-73.20 [-95.82; -50.61] -6.37 <0.001 

Amplitude blink/eye 

movement normalized 

-3727 [-4103; -3351] -19.34 <0.001 

HRV Data Normalized 

HF -5e-5 [-7e-5; -3e-5] -4.72 <0.001 
0.04 

LF/HF ratio -0.054 [-0.079; -0.031] -4.53 <0.001 

Eye Parameter (manual scoring) 

Average eye 

blink/movement 

duration 

0.851 [0.809; 0.892] 40.55 <0.001 0.27 

Log of average eye 

blink/movement 
duration 

0.573 [0.555; 0.592 65.54 <0.001 0.46 

H. Alpha Burst and Eye Parameter combined 

A linear regression model based on alpha bursts and 

eye parameter characteristics was created using only 

significant covariates. Table IV illustrates the strength of 

associations between the drowsiness predictors and TOR 

as well as SDLP and provides an overview of the 

respective p-values from the linear regression model and 

the linear mixed model. The combination of eye and 

alpha burst parameters resulted in an increase of R
2
 to 

0.54. R
2
 of eye and alpha burst parameter with SDLP 

(0.15) approached that of TOR (0.17). 

TABLE IV.  ALPHA BURSTS NORMALIZED (MINIMUM FOUR WAVES) & 

EYE PARAMETERS (ALGORITHM BASED) 

Drowsiness 
Predictor 

TOR SDLP 

 LRM LMM LRM LMM 

Alpha Burst 
and Eye 

Parameter 
combined 

R2= 

0.54 
 

R2= 

0.15 
 

 t z p>|t| p>|z| t z p>|t| p>|z| 

Duration C4 3.24 2.93 <0.001 <0.001 3.89 0.05 
< 

0.001 
0.960 

Duration O2 4.06 5.07 <0.001 <0.001 4.16 5.63 
< 

0.001 
< 

0.001 

Relative 

amplitude C4 
5.02 7.15 <0.001 <0.001 -0.43 1.37 0.668 0.170 

Relative 

amplitude O2 
7.55 7.05 <0.001 <0.001 -3.27 -2.13 

< 

0.001 
0.033 

Average 

duration 
blink<0.5s 

19.9 11 <0.001 <0.001 6.30 0.59 
< 

0.001 
0.553 

Total duration 

blink/eye 

movement 
≥0.5s 

7.00 8.04 <0.001 <0.001 6.36 4.23 
< 

0.001 

< 

0.001 

ECD blink/eye 

movement 
11.24 6.73 <0.001 <0.001 3.03 3.46 

< 

0.001 
0.001 

AECS 

blink/eye 
movement 

-6.9 -8.75 <0.001 <0.001 -5.14 -1.24 
< 

0.001 
0.216 

Amplitude 
blink/eye 

movement 
normalized 

-14.43 -2.43 <0.001 <0.001 -2.71 -2.48 
< 

0.001 
0.013 

Error SD 
estimates 

 
constant=0.265 
residual=0.367 

 
constant=0.098 
residual=0.162 

 

All p-values in the linear regression model as well as 

the linear mixed model are < 0.05; hence there is a 

significant relationship between TOR and drowsiness 

predictors. However, a significant association can also be 

seen between the covariates and SDLP in the linear 

regression model but not in the linear mixed model. 

When LMM was used, the standard deviation (SD) of 

constant subject error was markedly smaller than the SD 

of the residual error, confirming appropriateness of using 

R
2 

from LRM for comparing contributions of different 

covariates. 
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The strengths of association with the ocular and alpha 

burst parameters were subsequently individually analysed 

for each subject to explore the relative roles of these 

groups of parameters. Table V illustrates several groups 

of subjects depending on their individual R
2
 as well as the 

overall drowsiness (TOR scale) of the subject within the 

study. The subjects were allocated into “TOR low” group 

if the subject’s drowsiness score stayed <3 during the 

whole experiment and into “TOR high” group if the video 

based score reached ≥ 3 (very drowsy subjects) during the 

study. Subjects with a high TOR were then further 

divided depending on their respective association of the 

eye parameters as well as the alpha burst parameter with 

TOR. The first group in this context, which consists of 

five subjects, showed a strong association for the eye 

parameters and a low relation for the alpha bursts 

indicators. In contrast, only one subject with a high TOR 

was identified having a weak eye and a strong alpha burst 

association with TOR. 

TABLE V.  SEVERAL G
STRENGTH OF ASSOCIATION  

Group of subjects Number 
Subjects 

R2 Eye R2 Alpha  
Burst 

R2 combined 

TOR low 11 0.20 0.04 0.22 

TOR high 19 0.51 0.33 0.57 

R2 Eye high 
R2 Alpha Burst low 

TOR high 

5 0.62 0.03 
(spectral 

EEG: 
R2=0.005) 

0.62 

R2 Eye low 
R2 Alpha Burst high 

TOR high 

1 0.14 0.25 0.32 

 

It can be seen from Table V that in approximately 15% 

of the subjects who reached high levels of drowsiness, the 

EEG alpha bursts are not present and cannot be used as 

an indicator of drowsiness. However, these subjects have 

a strong association of the ocular parameters with TOR 

and the combined association resulted in R
2
=0.62, which 

is higher than the overall R
2
=0.54 (see Table IV). Such 

compensation occurred also in one drowsy subject (TOR 

high), where the association of the eye parameter with 

TOR was low and that of the alpha burst indicators was 

high. However, in that case, R
2
 combined = 0.32 was 

significantly smaller than the overall R
2
=0.54. In addition, 

subjects with a low TOR had a significantly smaller R
2
 

combined compared with those showing a high TOR. 

IV. DISCUSSION 

The objective of this paper was to estimate 

contributions of the algorithm based physiological 

indicators, derived from EEG and ocular patterns and 

HRV measures, into potential automatic characterisation 

of driver drowsiness. The associations for these 

parameters were established with the references TOR as 

well as SDLP. As linear regression requires an 

assumption of independent observations, linear mixed 

models were also investigated to take into account 

potential correlation between multiple observations for 

the same subject (although the majority of analysed 

characteristics were derived over non-overlapped time 

intervals). Similar values of regression coefficients 

between LMM and LRM justifies interpretation of the 

linear regression R
2 

as a measure of the association 

strength. The data were recorded from 30 subjects during 

a driving simulator experiment. 

It has been shown in previous studies that the most 

prominent EEG spectral range is the alpha band [25], [26], 

in particular the duration and other parameters of the 

alpha bursts have the strongest association with driver 

drowsiness [14]. As observed from Table II the strength 

of association for the spectral power of EEG Alpha Band 

is lower than that of the duration of alpha bursts, when 

they are detected using a morphological rather than a 

spectral method. In this study, the multiple regression 

model based on C4 and O2 sites using a combination of 

alpha bursts parameters (duration, amplitude, relative 

amplitude and others) showed a significant goodness of 

fit R
2
=0.3, whereas the EEG spectral parameters MPSR 

O2 & C4 reached R
2
=0.21. Combing the spectral and 

morphological parameters did not improve the model’s 

goodness of fit due to an obvious substantial collinearity 

between these characteristics. Therefore, the duration and 

amplitude parameters of the alpha bursts are the most 

promising indicators for drowsiness using EEG. In 

addition, the channel O2 showed in both EEG spectrum 

and EEG alpha bursts a stronger relation than C4. This 

can be explained by the fact that alpha bursts in the 

occipital areas are related to eye closures [13], which 

have been demonstrated to have a very strong association 

with driver drowsiness [5], [6].  

The eye parameters in this study, which were 

automatically detected by an algorithm written in Matlab, 

have shown the strongest relation to driver drowsiness. A 

multiple regression model based on blink duration, eye 

closure duration, average eye closure speed as well as 

amplitude reached an association to TOR of R
2
=0.48. The 

eye parameter, eye blink/movement duration, which was 

scored manually, resulted (by using log of average eye 

blink/movement duration) in R
2
=0.46 and was therewith 

slightly weaker than the automatically based one 

(although a smaller set of additional parameters was 

derived for the manually detected eye blinks). Out of a 

number of the automatically detected eye parameters 

those related to the eye blink duration performed the best. 

The two prominent drowsiness indicators such as 

PERCLOS as well as amplitude/velocity ratio according 

to [9], [10] have not been implemented into our algorithm 

yet. The parameter eye closure duration has been reported 

to be stronger than the duration of eye blinks [9], [10], 

which could not be demonstrated for the algorithm 

derived indicator eye closure duration. An explanation is 

that the precise beginning/end for the slow eye 

closures/openings could be ambiguous. The eye blink 

amplitude showed the weakest correlation with 

drowsiness, which is in line with previous studies [9], 

[10]. 
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The HRV data HF power and LF/HF ratio have been 

investigated and showed in contrast to other publications 

[18]-[20] a weak association with the average drowsiness 

rating. In addition, both HRV parameters had no 

significant association with the reference TOR by using 

the linear mixed model. Due to these findings the HRV 

data were not included in the following described hybrid 

model. 

A hybrid solution was investigated using a multiple 

regression model based on eye and alpha bursts 

parameters. The overall strength of association reached 

R
2
=0.54 and the association with SDLP was similar to 

that between SDLP and TOR (“gold standard”). The 

associations using both LRM and LMM were both 

significant. A further investigation, where subjects and 

their respective influence were assessed, revealed that in 

about 15% of the subjects alpha bursts were not observed, 

when the driver reached ≥ 3 of the drowsiness scale (i.e. 

significant level of drowsiness). This result is consistent 

with the fact that in about 20% of the subjects little or no 

alpha activity occurs during eye closure [13]. In contrast, 

for one subject, when TOR reached ≥ 3, the linear 

regression model based solely on eye parameters, showed 

a weak association, whereas the alpha burst based model 

reached a relative high correlation. These observations 

support the feasibility of potential benefits for the hybrid 

drowsiness algorithm. Finally, the overall association of 

the combination of ocular and EEG measures with TOR 

was significantly weaker (R
2
=0.22), when TOR was <3 

and stronger (R
2
=0.57) when TOR was ≥3. This finding 

highlights the possibility of false positives in a 

prospective automatic drowsiness detection algorithm. 

V. CONCLUSION 

Using the driving simulation data, this paper reported 

the statistical associations between several automatically 

detected characteristics of physiological drowsiness 

indicators with the “gold standards” of drowsiness – 

trained observer rating and deviation from the middle of 

the lane. From the ocular, EEG pattern and HRV 

parameters, the ocular measures were demonstrated to be 

the strongest markers of drowsiness. For the EEG 

measures, the morphological detection of alpha bursts 

was confirmed to be superior to the characteristics 

derived from spectral analysis. The conventional HRV 

parameters – HF power and LF/HF ratio showed the 

weakest association with drowsiness. A combination of 

EEG alpha bursts and eye parameters resulted in a 

marked strengthening of drowsiness predictive ability. 

The results imply that a hybrid automatic algorithm, 

based on multiple characteristics of the eye blinks and 

alpha bursts, potentially derived from a single EEG 

electrode, but not necessarily including the HRV 

measures, is likely to achieve a level of accuracy in 

characterising driver drowsiness similar to that of a 

trained observer. 
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