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Abstract—Cancer research has produced tremendous basic 

and clinic levels of information. So far, to validate this 

information has become a most challenging task for 

researcher and clinician. However the information 

validated by mathematical models provides an opportunity 

for the researcher and clinician. The field of mathematical 

oncology has received great attention and increased 

enormously in the ongoing battle against cancer. This short 

review comprises the complexity of mathematical oncology 

and the new strategy of hybrid mathematical model of 

tumor growth. In addition we suggest how these new 

directions could contribute to addressing the current 

challenges of understanding of tumor mechanisms. 

 

Index Terms—complexity of mathematical oncology, 

multiscale modeling, modeling techniques, drug modeling. 

 

I. INTRODUCTION 

Mathematical modeling of cancer is still in its infancy 

but it’s not new, it goes back over half a century, but 

experimental oncologists have largely ignored it. Today, 

the field of mathematical oncology has received great 

attention and increased enormously, but over-optimistic 

estimations about its ability have created unrealistic 

expectations. Mathematical models are too simplistic and 

cannot model realistically a disease as complex as cancer. 

However what we understand about cancer is extremely 

complex, thus difficult to model. Mathematical modeling 

provides a rigorous framework for understanding disease 

evolution and for testing biological hypotheses. By 

translating biological complexity and translating 

biological components of cancer development into 

mathematical terms, the modeling process describes 

cancer-related phenomena as a complex set of 

interactions with the emerging outcome predicted by 

mathematical analysis that defines the field of 

mathematical oncology. Computational oncology uses 

mathematical techniques to extract information from 

large datasets (such as transcriptome, proteome, or 

imaging data) where extensive computational resources 

are utilized either by means of statistical and 
1

bioinformatics methodologies or for the study and 

quantitative prediction of tumor behavior by means of 
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data-driven models. Physical oncology views tumors as 

complex systems that result from biophysical interactions 

and processes. This leads to mechanism-driven models 

that aim at the identification and analysis of biophysical 

laws to quantify and predict cancer progression.  

In this contribution, we aim at equipping the reader 

with a perspective of mathematical modeling in cancer. 

We hope that the reader will obtain an insight that 

stretches far beyond actual examples. First, we discuss 

about complexity of mathematical biology. Then, we end 

this contribution by a discussion of mathematical 

modeling of cancer. 

II. IS MATHEMATICAL ONCOLOGY SO COMPLEX? 

Cancer mechanisms have been designed by evolution; 

they are often complicated, subtle, and very special or 

unusual. To understand them, one must immerse oneself 

in the messy, complex details of the biology; that is, you 

must work directly with biologists. To model cancer 

system, one should understand how the behavior of the 

system at one level arises from structures and 

mechanisms at lower levels. How does the biochemistry 

of a cell allow it to receive signals, process them, and 

send signals to other cells? How does the behavior of 

groups of cells in the immune system give rise to the 

overall immune response?  In the case of tumor these 

questions are even more difficult, because the objects at 

the lower level have been designed by evolution to have 

just the right special properties to give rise to the 

behavior at the higher level. And it is usually not easy to 

decide what the important variables are at the lower level. 

If your model has considered only few parameters, then 

you will not be studying the real tumor mechanism. If 

your model has too many, it may be so complicated. You 

need to be able to deduce the consequences from the 

assumptions. That is what mathematicians are good at. 

Finally, it is characteristic of living systems that the parts 
themselves are not fixed but ever changing, sometimes 

even affected by the behavior of the whole system. A 

researcher who uses animal models in his research work 

gets very unusual results, and the results were not 

repeatable week to week.  For all these reasons, 

biological data must be approached cautiously and 

critically [1]. 

Journal of Medical and Bioengineering Vol. 4, No. 4, August 2015

©2015 Engineering and Technology Publishing 293
doi: 10.12720/jomb.4.4.293-296

The Rise of Mathematical Oncology

mailto:kirangeorge01@yahoo.com


Since tumor systems are so diverse and everything 

seems to interact with everything else, there are many 

possible measurements, and enormous amounts of data 

can be produced. Don’t do mathematical oncology to 

satisfy a desire to find universal structural relationships; 

you’ll be disappointed. Don’t waste time developing 

methods of mathematical biology; the problems are too 

diverse for central methods. What’s left is the biology. 

You should do mathematical oncology only if you are 

deeply interested in the science itself.  In complex 

biological problems, you must have ideas about how the 

structure of the whole is related to the assumptions about 

the parts. Thinking through such ideas and proving the 

consequences of the assumptions are important ways to 

model the whole cancer systems. 

III. AN EXCITING NEW DEVELOPMENT 

Cancer modeling comes in a wide variety of styles. 

Indeed, it can involve almost any type of applied 

mathematics. There is a long tradition of mathematical 

models of tumor growth, ranging from simple temporal 

population dynamic models to full three-dimensional 

spatiotemporal models [2]. Over the past 10 years or so 

there has been a rapid growth in deterministic reaction–

diffusion models that explicitly consider the tumor as a 

single continuous density varying in both space and time. 

Generally these have been used to model the spatial 

spread of tumors in the form of one-dimensional 

invading waves or as two-dimensional patterns of cancer 

cells [3]-[5]. Other numerical approaches have been 

considered [6]-[8], but these still treat the tumor as a 

continuous mass. Although all these models are able to 

capture the tumor structure at the tissue scale, they fail to 

describe the tumor at the cellular level. The development 

of single-cell-based modeling techniques provides such a 

description and allows one to easily model cell–cell and 

cell–microenvironment interactions. Several different 

individual-based models of tumor growth have been 

developed recently, including cellular automata models 

[9]-[13], potts models [14]-[16], agent-based models [17] 

or lattice-free models [18], [19]. Ordinary differential 

equations can be used to study the growth of tumor cell 

populations, often leading to a conclusion of 

Gompertzian growth. Partial Differential Equation (PDE) 

model using cell densities and nutrient concentrations as 

state variables can be used to analyze various 

spatiotemporal phenomena. Individual and agent-based 

models that treat cells as discrete objects with predefined 

rules of interaction can offer an improvement over PDE 

methods in some situations. Agent-based systems are one 

of many computationally intensive methods and are often 

components of multiscale models. Many of these models 

are also hybrid by definition and couple the advantages 

of individual-based models, representing cells, with 

continuous reaction–diffusion models that better 

represent environmental variables such as nutrients or 

tissue. Such hybrid models also allow one to link 

multiple models across multiple spatial scales, from 

genes to organ. The ability to bridge scales makes them 

ideal for cancer modeling as they effectively 

compartmentalize each scale and allows processes to 

bridge these compartments [10], [11], [8], [12], [14], [15], 

[19]. Therefore, these so-called multiscale models are far 

more accessible to the biologist both in terms of 

understanding and in terms of experimental validation.  

IV. MULTISCALE SYSTEM MODELLING 

Tumor cells have heterogeneous nature whose growth 

fully relay on surrounding microenvironment and cell 

interactions. This interactive processes act together to 

control cell proliferation, apoptosis, and migration. These 

dynamical interactions cannot be investigated completely 

through biological experiments; rather they must be 

computed with mathematical models, which guides 

through new experimental design and interpretation. 

Mathematical modeling helps the understanding of 

cancer initiation and progression by investigating 

cancerous system as a whole by analyzing how 

individual components interact to give rise to the 

function and behavior. Decades of dedicated efforts of 

modelers developed multiple biological scales (different 

spatial scales and temporal scales), which play an 

important role in moving the field of cancer systems 

biology toward clinical implementation. Present in silico 

cancer models are having the capability to (a) simulate 

experimental procedures, to optimize and predict clinical 

therapies and outcome, and (b) test and refine medical 

hypotheses [20].  

 

Figure. 1. Multi scale model of tumor mechanisms  

Multiscale cancer modeling encompasses many 

different spatial and temporal scales, ranging from 

nanoseconds to years in time and nanometers to 

centimeters in scale. Developing more realistic and more 

accurate predictive model is a challenging task for the 

modelers. The main reason is that, in multiscale 

modeling more number of model parameters is to be 

considered as these parameters will have to be defined, 

quantified, and frequently adjusted according to data 

from the literature and from experiments. Besides, if the 

model links bi-directional, need to be higher- and lower-

level variables, parameters, and functions characterizing 
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the model are influenced by one another. When 

developing multiscale modeling four main biological 

spatial scales are to be accounted: atomic, molecular, 

microscopic, and macroscopic. Each of these spatial 

scales have multiple temporal scales, normally atomic 

scale (intracellular) generally happen much faster than 

those at a macroscopic scale (organ); The time and space 

scales vary together, with nanoseconds to year at the time 

scale corresponding to nanometer to centimeter at the 

space scale [20]. 

V. MODELING TECHNIQUES 

To design cancer system, discrete, continuum, or 

hybrid, modeling techniques are used in cancer system 

biology. 

A.  Continuum Model 

Continuum technique is good for larger scale system 

often a lesser choice in the exploration of tumor cell. 

Continuum model takes into account variables like cell 

volume, fractions, density, and cell substrate 

concentrations, (e.g., nutrient, oxygen, and growth 

factors). This model is considered when studying the 

effects of genetic, cellular, and microenvironment 

characteristics on overall tumor behavior. But continuum 

models cannot be used to study an individual cell 

dynamics and discrete events. Discrete models are 

suitable for addressing these shortcomings because they 

function at the individual cells in space and time. 

B.  Discrete Model 

Discrete models can easily incorporate on studying 

carcinogenesis, genetic instability, natural selection, cell-

cell and cell-matrix interaction mechanisms. [21]. 

However, discrete techniques also have drawbacks, 

which limit the model to a relatively small number of 

cells. As a result, a typical discrete model is usually 

designed with a lower domain size [22]. For these 

reasons, cancer modelers are progressing to hybrid 

techniques that combine both continuum and discrete 

descriptions [22]-[24].  

C.  Hybrid Model 

In hybrid models cells are taken into account as 

discrete in some parts of the domain and as a continuum 

in others [25]. Hybrid models have the potential to 

couple biological phenomena from the atomic scales to 

those at tumor scale. As in biological systems, the in 

silico cell in the hybrid model can perform fundamental 

intrinsic core processes, specifically ones known to drive 

cancer invasion. The hybrid model has great predictive 

power, even though these core processes are not 

specified in molecular detail [9]. Such molecular details 

could be incorporated at a later date to refine the effects 

of particular core processes (such as the cell cycle, or 

cell–matrix interactions), owing to the open multiscale 

architecture of hybrid model. In fact, current hybrid 

model predictions have indicated molecular processes 

that are in need of better specification and/or 

parameterization. 

In the hybrid model, we further focus on the interface 

between cancer cell phenotype and microenvironment. 

Again, this captures a biological reality, because the 

interaction between the cell and its microenvironment is 

known to have a crucial role in cancer progression [26]. 

Therefore, in the model cells are represented as points on 

a lattice that represents the tissue microenvironment. 

Each in silico cell has a phenotype that comprises a set of 

traits that include, but are not limited to, proliferation, 

migration, adhesion and nutrient consumption. By 

representing the microenvironment as a lattice on which 

cells grow and interact, we can implement multiple 

environmental factors such as density of extracellular 

matrix (ECM) and the concentrations of nutrients and 

proteases. How these factors change over time on the 

lattice is then defined by a set of mathematical equations. 

Hybrid models are divided into two categories: 

composite hybrid modeling and adaptive hybrid 

modeling. In composite hybrid models, individual cells 

are treated discretely but interact with other chemical and 

mechanical continuum fields.  In adaptive hybrid models, 

both discrete and continuum representations of cells are 

chosen dynamically and adaptively where appropriate 

[20]. Overall, the hybrid model provides a framework for 

quantitative analyses of cancer progression and is 

endowed with an intuitive link between in silico and real-

life cancer biology. 

VI. MODELING OF DRUG DELIVERY AND IMPACT ON 

TUMOR GROWTH 

Vast amounts of research directed towards the 

complexity of the disease and the understanding of the 

pathophysiology of cancer, its progression, mechanisms 

of drug resistance at various scales, as well as the 

optimization of drug dosage for effective treatment and 

prevention strategies. Due to the nature of experimental 

investigations it is difficult to assign quantitative weights 

to diffusion gradients of both drug and micro 

environmental substrates that induce physiologic 

resistance and decrease the efficacy of drug therapy, 

which can result in a poor response to chemotherapy 

from a combination of diminished drug delivery and lack 

of drug activity [27]. To understand the data produced in 

quantity by researchers and clinicians the conceptual 

framework is necessary. The overall tumor mechanisms 

and its treatment might benefit from an evaluation of 

mathematical modeling. This model can be coupled with 

biological experiments and clinical trials. Mathematical 

modeling can provide valuable information to plan 

effective biological experiments for testing theoretical 

hypotheses. Data from biological experiments provide 

necessary constraints for choosing appropriate model 

parameters. Therefore, pure theoretical or experimental 

investigations alone have inherent flaws and limitations. 

However a critical drawback of theoretical models is 

their plasticity in uncritically recapitulating training data, 

without regard to the model’s actual validity and 

predictive capability [28]. 

VII. CONCLUSION 
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Mathematicians are not going to find a cure for cancer. 

However, they are needed in cancer research to help for 

analyzing the enormous amount of data generated by the 

various experiments and clinical trials being conducted 

around the world. They are also needed to develop and 

validate new mathematical models. These models can in 

turn be used to run simulations, test theories, and to 

determine the optimum dosage of new medicines being 

developed. Today, there does not exist any good 

mathematical description of biological properties. In fact, 

it seems like the available mathematical tools are not 

appropriate for the task. Through the search for a good 

mathematical model of cancer, it is actually predicted 

that fundamentally new mathematics will be developed.  
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