
Exploring Differential Nature of Human and 

Chimpanzee Organs through Linear Correlative 

and MI Measures 
 

Aurpan Majumder 
Dept. of ECE, NIT Durgapur, Durgapur, India 

Email: aurpan.nitd@gmail.com 

 

Mrityunjay Sarkar 
Dept. of ECE, D.I.A.T.M, Durgapur, India 

Email: mrityu1488@gmail.com 

 
 

 

Abstract—Change in gene expression values (due to 

mutation) is responsible for the evolution of complex organs 

in different creatures. Here we are carrying out our analysis 

in between two very closely related primates Human and 

Chimpanzee. Both Chimpanzee and Human are extant taxa 

evolution from a common ancestor due to the change in 

expression levels of genes in different organs. Change in 

expression levels of genes across various organs 

happen to be the key driving factor towards evolution 

of closely related primates. In this analysis we are 

comparing the extra features/functionalities in Human with 

respect to Chimpanzee via correlation based linear 

dependency as well as mutual-information based non-linear 

dependency between the relevant differential genes. In 

general it is clear from the analysis that maximum number 

of genes with changed expression level occurs in the TESTIS 

than in the BRAIN. This result is very surprising because it 

is our common assumption that most of the changes should 

occur in brain due to enhanced cognitive abilities and some 

recent literatures which focus on Transcription Factor (TF) 

genes of brain with differential expression between Human 

and Chimpanzee as a key factor of evolution. So, this turns 

out to be an important finding. 

 

Index Terms—correlation, mutual information, fuzzy c 

means clustering, kegg pathways 

 

I. INTRODUCTION 

Humans and Chimpanzees have originated from a 

common ancestor. It is known that the evolution of these 

closely related primates from a common ancestor had 

occurred 5-7 million years ago [1], [2]. Humans differ 

from Chimpanzees in a number of important anatomical 

and physiological respects. So, the most important 

question is that how Humans are different from their 

closely related primate Chimpanzee and why? Till now 

many theories have been proposed [3], [4] where most of 

them have focused on sequence and structure of genomes 

specific to some species and depending upon this many 

conserved functionalities have been explored. 
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However, Verki et al. [5] has proposed the concept of 

not only candidate gene analysis but also genome wise 

analysis to find out evolutionarily, physiologically, and 

bio medically important differences between two 

primates  

The differences between Human and Chimpanzee 

results in enhanced cognitive abilities and accordingly 

there is substantial increase in the size of Human brain. 

Khaitovich et al. [6] had first proposed comparisons for 

not only in brain, but also in other organs namely heart, 

kidney, liver, and testis. Function of Transcription Factors 

(T. F) in this aspect has been discussed by Nowick et al. 

[7]. Pathways are the key factors to explore different 

functionalities between the corresponding organs of 

Human and Chimp because pathways exhibit a form of 

grouping of different genes meant to explore certain 

biological functionality. Thus, across closely related 

primates if the pathways are different for a particular 

organ the functionalities will also be different. Hence, in 

search of different pathways in our work we do proceed 

via linear and non-linear dependencies across differential 

genes and have shown that for some organs linear 

analysis shows significant pathways while for others non-

linear half becomes far more significant. Below, a brief 

description of the two important terminologies in this 

aspect (namely correlation and mutual information) is 

being given. 

A. Correlation 

The most familiar linear measure of dependence 

between two quantities is the Pearson product-moment 

correlation coefficient, or "Pearson's correlation”. The 

population correlation coefficient ρX,Y between two 

random variables X and Y with expected values μX and μY 

and standard deviations σX and σY is defined as: 

[( )( )]cov( , )
( , ) X Y

XY

X Y X Y

E X YX Y
corr X Y

 


   

 
  

   

(1) 

where E is the expected value operator, cov means 

covariance, and, corr a widely used alternative notation 

for Pearson’s correlation. 
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If we have a series of n measurements of X and Y 

written as xi and yi where i = 1, 2, ..., n, then the sample 

correlation coefficient can be used to estimate the 

population Pearson correlation r between X and Y. The 

sample correlation coefficient is written as 

1
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B. Mutual Information 

Formally, the mutual information of two discrete 

random variables X and Y is: 

( , )
( ; ) ( , ) log( )

( ) ( )y Y x X

p x y
I X Y p x y

p x p y 

             (3)

 

where p(x, y) is the joint probability distribution function 

of X and Y, and p(x) and p(y) are the marginal probability 

distribution functions of X and Y respectively. 

In the case of continuous random variables, the 

summation is replaced by a definite double integral: 

( , )
( ; ) ( , ) log( )

( ) ( )
Y X

p x y
I X Y p x y dxdy

p x p y
           (4) 

where p(x, y) is now the joint probability density function 

of X and Y, and p(x) and p(y) are the marginal probability 

density functions of X and Y respectively. Many 

estimators are available for the calculation of Mutual 

Information [8]. A detailed description and a comparative 

study of their performances are given in [9], [10]. Here 

we have applied Parametric Gaussian Estimator [11], 

[12] where the Mutual Information between two variables 

X and Y is calculated by 

I(X, Y) =   )log(
2

1
22

C

YX
                   (5) 

Here 
2

X and 
2

Y are the variance of X and Y 

respectively and C is the determinant of covariance 

matrix. Other methods described in different literatures 

[9], [10] (like Miller Madow, Shrinkage, Schurmann-

Grassberger) does not give any noticeable difference in 

the performance [13] and hence we selected parametric 

gaussian estimator, the fastest one for our simulation. 

The rest of the paper is as follows. In next section we 

have discussed about the Methodology. Then in Results 

and Comparison section pathways from two different 

methods are compared. In this section we have also given 

functionalities (how they work differently between 

Human and Chimps) of some significant pathways in the 

corresponding organs. The paper concludes with 

Conclusion and Future work. 

II. METHODOLOGY 

Our dataset contains expression profiles of 6 Humans 

and 5 Chimps. For this analysis tissues are collected from 

individuals who had suffered sudden death. This is a 

whole genome base data where in total 21,000 transcripts 

were measured by 51,460 probe sets. Details about the 

experimental settings are available in [14]. All primary 

expression data are publically available at 

(http://www.ebi.ac.uk/arrayexpress/experiments) with 

accession number E-AFMX-11. 

We have the sample of 5 tissues (brain, heart, kidney, 

liver, testis) from 6 Humans and 5 Chimps [14]. The 

calculation of gene wise ks, ki, ka is performed from the 

expression data obtained from the Affymetrix arrays 

using RefSeq-identifiers [15] given in Affymetrix 

annotation tables [16]. There were in total 11,781 genes, 

ki is an estimate of the substitution rate of a genomic 

region that avoids the large sampling errors, ks is the 

substitution rate per synonymous site when closely 

related primates were compared [17], ka is the promoter 

divergence [18]. Measurement of expression divergence 

for each tissue and each gene were associated with 

corresponding ka/ki ratio and the impact of the ratio on 

expression divergence were calculated by R package 

ANOVA [19]. This ratio is a significant predictor of 

expression divergence having RSS (Residual Sum of 

Square) = 0.0023 and p<10
-06

. 

In any organ between two species, if a gene shows 

expression divergence then against the gene name for that 

particular organ a 1 is assigned otherwise a 0 is assigned. 

In this dataset, first we pick up only those genes which 

do not give any expression change in any tissue of Chimp 

with respect to Human (corresponding entries are 0). 

Next, we pick up those genes which give an expression 

change only in brain (not in remaining 4 tissues) of 

Humans with respect to Chimps (corresponding entry is 

1). We repeat the same for the remaining 4 tissues. After 

making such an ensemble of genes we first do linear 

clustering. While simulating we have implemented 

through a form of partition clustering (Fuzzy C Means 

(FCM) [20]) instead of hierarchical clustering. 

Due to the following reasons we have chosen FCM 

over other methods: 

1) When this clustering operation is performed then 

across iterations the association between two genes can 

change (taking other genes as a background). 

Hierarchical clustering is unable to detect this unique 

property where if two genes get associated in any 

iteration then for the remaining iterations they will be 

associated forever, but partition clustering checks the 

necessity of grouping for each and every iteration and if 

in some stage it finds that any gene is not suitable with 

respect to other genes present in a cluster then it will omit 

that one. On the other hand, if it finds that a gene has 

close association with other genes present in any cluster 

then the relevant gene is added as a member of that 

cluster. 

2) Now in partition clustering, we are using FCM 

instead of simple K-means because the association of 

each gene over all the clusters can be judged only through 

FCM, whereas the K-means counterpart can detect the 
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association of each gene for an individual cluster and 

assign the same to that particular cluster only. 

Let a gene X show same level of (strong) association 

over two clusters A and B having different functionalities. 

So FCM algorithm will assign X in both A and B, 

suggesting that X has possibly got similar impact over the 

functionalities described by A and B, but simple K-means 

will assign X in either A or B, neglecting the effect of X 

on the functionalities described by the other. Here, at first 

clustering is governed by Pearson correlation based gene 

to gene dependency. 

The optimum number of clusters is found utilizing the 

concept of Xie-Beni [20] index which is meant for 

judging the quality of fuzzy clustering. It may be 

expressed as: 

XB=
2

1 1

2
2

min jiji

k

i
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mmn
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                  (6) 

The numerator of the Xie-Beni index is basically the 

objective function minimized by the FCM algorithm. The 

denominator of XB is basically the separation between the 

i-th and j-th clusters. The more separated the clusters are, 

the larger is the denominator and hence the smaller is the 

value of XB. Thus, the optimal number of clusters can be 

obtained by minimizing the XB value. 

For genes which do not undergo any change in any 

tissue we are getting 25 numbers of clusters. Number of 

optimum clusters for genes with differential expression 

(only) in brain, heart, kidney, liver and testis are 4, 8, 8, 6 

and 20 respectively. 

Next, we go for information theoretic Fuzzy C Means 

clustering through mutual information (henceforth to be 

designated as MI) based dependency between every pair 

of genes. For genes which do not undergo any change in 

any tissue we are getting 28 numbers of Xie-Beni 

optimised clusters. Whereas, the optimal number of 

clusters for differential genes (only) in brain, heart, 

kidney, liver and testis are 4, 10, 10, 4 and 25 

respectively. 

A. Pre-processing 
 

Before going for the above mentioned analysis we are 

replacing 0 by a very small value of (10^-30) and missing 

values are imputed by KNNimpute [21] method. 

The KNN-based method selects genes with expression 

profiles similar to the gene of interest to impute missing 

values. Let us consider gene X that has one missing value 

in experiment 1, this method would find K other genes, 

which have a value present in experiment 1, with 

expression most similar to X in the remaining 

experiments. A weighted average of values in experiment 

1 from the K closest genes is then used as an estimate for 

the missing value in gene X. 

III. RESULTS AND COMPARISON 

Cluster significance is found by the number of 

significant KEGG pathways [22]. If a pathway has ‘p-

value’  0.05 and at least 3 genes of any organism are 

associated with that pathway then the pathway is 

considered to be significant. Here, at first we are 

searching for the number of significant pathways with 

respect to differentially expressed genes, i.e. genes which 

are mostly responsible for the difference between 

Humans and Chimps in the various organs. 

In Pearson correlation based clustering number of 

significant pathways for genes changed in brain only 

equals 8 & for MI based clustering it equals to 9. 

Similarly, for heart this becomes equal to 17 and 6, for 

kidney 10 and 5, for liver 6 and 7and finally for testis 47 

and 38 respectively. 

After getting the pathways, we observed that not only 

the number of significant pathways in brain and heart are 

higher in linear correlative than the MI based approach, 

but also the p-value significance of the pathways are 

better in the linear half. However, it is just the reverse for 

liver and testis where p-value significance as well as total 

number of participating genes in significant pathways are 

better through MI based analysis (Table I and II). The 

result is somehow moderate in kidney. 

TABLE I.  SIGNIFICANT KEGG PATHWAYS OF DIFFERENT ORGANS BY 

LINEAR CORRELATIVE METHOD 

Region Pathways                               ‘p-value’          Genes 

 

 

Brain 

 

 

 

Propanoate metabolism                  0.000144               4 
Pyruvate metabolism               0.000331         3 

Valine, leucine and isoleucine degradation  

0.000394          4 
Metabolic pathways                 0.002333         13 

 

 

 

 

 

 

Heart 

 

 

 

Propanoate metabolism             2.79E-07         5 
Valine, leucine and isolucine degradation 

1.59E-06          5 

Adherens junction                     0.000164          4 
beta-Alanine metabolism              0.000166          3 

Fatty acid metabolism              0.000873          3 
Metabolic pathways                            0.001734               8 

Glycolysis Gluconeogene-sis    0.002067          3 

Oocyte meiosis                                         0.003091               4 

Pyruvate metabolism                 0.004176          4 

Kidney 

 

Metabolic pathways                   0.002311         10 

Alzheimer's disease                               0.003808                5 

Liver Metabolic pathways                              0.001132          9 

Testis 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

Metabolic pathways                  0.000249         17 
Huntington's disease                        0.000405          5 

Propanoate metabolism                 0.000562          4 

Oxidative phosphorylation          0.001362          5 
Parkinson's disease                          0.001362             5 

Focal adhesion                           0.001518          6 
Endocytosis                                          0.001581          3 

O-Glycan biosynthesis                    0.002119          3 

Peroxisome                                           0.002472          3 
Citrate cycle (TCA cycle)             0.003541          3 

Alzheimer's disease                                 0.004148              5 
Glutathione metabolism                      0.004148                3 

Valine, leucine and isoleucine degradation  

0.004703              3 
Regulation of actin cytoskeleton 

0.005807                4 
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TABLE II.  SIGNIFICANT KEGG PATHWAYS OF DIFFERENT ORGANS BY 

MI METHOD 

Region Pathways                                ‘p-value’         Genes 

Brain Pyruvate metabolism               0.0001666      3  

Heart 

 

 

 

 

Propanoate metabolism           0.000238       3 
Valine, leucine and isoleucine degradation 

0.00048             3 
Adherens junction                        0.001186       3 

Metabolic pathways                0.003312       8 

Regulation of actin cytoskeleton 
0.008891       3 

Kidney 

 

 

TGF-beta signaling pathway   0.001471       5 
Oxidative phosphorylation     0.003848        6 

Metabolic pathways                0.005802        8 

Liver 

 

 

 

 

Ubiquitin mediated proteolysis 

0.001284        4 

Tight junction                         0.004688        5 
Ribosome                                    0.005688        4  

Metabolic pathways               0.00896          13 

Testis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O-Glycan biosynthesis           2.56E-05        3 
Notch signalling pathway       0.002167           3 
Ubiquitin mediated proteolysis 

0.002348           5  

Glutathione metabolism        0.00288              3 
Metabolic pathways             0.003646        16 

Insulin signalling pathways   0.004276        5 
Oocyte meiosis                    0.005206        4 

Tight junction                      0.006313        4 

Pyruvate metabolism             0.006996        3 

Wnt signalling pathway         0.007161         4 

Long-term depression           0.0087            3 
Alzheimer’s disease             0.0093             4 

Huntington’s disease                      0.0093                   4 

Long-term potentiation                0.0093           3 
Neurotrophin signalling pathway  

0.0093           4 
Renal cell carcinoma             0.0093           3  

Ribosome                                0.0098          3 

Adherens junction                    0.0098         3 
Melanogenesis                          0.01             3 

Parkinson's disease                    0.01            3 

B. Biological Importance of some Significant Pathways 
 

 

In this section, we will discuss about some significant 

pathways which were detected by linear correlative as 

well as mutual information based methodologies. These 

pathways are assumed to be those which are primarily 

responsible for the change between Humans and 

Chimpanzees in the five tissues. Thus, here we will try to 

focus on the different functionalities of these pathways in 

Humans and Chimps. Pathways are discussed according 

to those tissues where they are significant. If any pathway 

is repeated in any organ (according to the outcome of 

clustering) by any method then we take the most 

significant one. Unfortunately, for some pathways we did 

not find any significant difference published till date. 

1) Propanate metabolism: Found significant in: 

 Brain (By linear correlative method with ‘p-value’ 

of 1.44E-04 having 4 genes) 

 Heart (By linear correlative and MI method with 

‘p-value’ of 2.79E-07 and 2.38E-04 having 5 and 

3 genes) 

 Testis (By linear correlative method with ‘p-value’ 

of 5.62E-04 having 3 genes) 

Function: The metabolism of propionic acid 

(propanoate) begins with its conversion to propionyl 

coenzyme A (propionyl-CoA), which is the usual first 

step in the metabolism of carboxylic acids. 

2) Pyruvate metabolism: Found significant in: 

 Brain (By linear correlative method and MI 

method with ‘p-value’ of 3.3E-04 and 1.67E-04 

both having 3 genes) 

 Heart (By linear correlative method with ‘p-value’ 

of 4.17E-03 having 4 genes) 

 Testis (By MI method with ‘p-value’ of 6.99E-03 

having 3 genes) 

Function: Pyruvate is a constituent of all the media 

used for Human in vitro fertilization (IVF), and it 

promotes the development of fertilized Human oocytes 

(zygotes) to blastocysts in culture. 

Whereas in Chimps it plays a central role in balancing 

the energy needs of various tissues in the body under 

conditions in which oxygen supply is limited. 

3) Metabolic pathways: Found significant in: 

 Brain (By linear correlative method with ‘p-value’ 

of 2.33E-04 having 13 genes) 

 Heart (By linear correlative method and MI 

method with ‘p-value’ of 1.73E-03 and 3.31E-03 

respectively both having 8 genes) 

 Kidney (By linear correlative method and MI 

method with ‘p-value’ of 2.31E-03 and 5.8E-03 

respectively having 10 and 8 genes) 

 Liver (By linear correlative method and MI 

method with ‘p-value’ of 1.1E-03 and 8.9E-03 

respectively having 9 and 13 genes) 

 Testis (By linear correlative method and MI 

method with ‘p-value’ of 2.49E-04 and 3.64E-03 

respectively having 17 and 16 genes) 

Function: In Humans mostly we see protein 

metabolism which determines and transmits amino acids, 

followed by conversion of the non-nitrogenous part of 

those molecules to glucose or lipids and helps in the 

removal of ammonia from the body by the synthesis of 

urea. 

In Chimps we mainly observe carbohydrate 

metabolism which maintains concentration of glucose in 

blood within a narrow, normal range by glycogenolysis 

and gluconeogenesis. 

4) Oxydative phosphorylation: Found significant in 

 Kidney (By MI method with ‘p-value’ of 3.84E-03 

having 6 genes) 

 Testis (By linear correlative method with ‘p-value’ 

of 1.36E-03 having 5 genes) 

Function: Oxidative phosphorylation (or OXPHOS in 

short) is the metabolic pathway in which the 

mitochondria in cells use their structure, enzymes, and 

energy released by the oxidation of nutrients to reform 

ATP. It is functional in MITOCONDRIAL DNA 

(mtDNA). 

From [23] we can say that “Oxygen consumption, a 

sensitive index of respiratory function, showed that 

mtDNA from Chimpanzee and Pigmy Chimpanzee 
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replaced the Human mtDNA and restored respiration to 

essentially normal levels.” 

5) TGF-beta signalling pathway: Found significant in 

 Kidney (By MI method with ‘p-value’ of 1.47E-03 

having 5 genes) 

Function: The transforming growth factor-ss (TGF-

beta) signalling pathway plays a pivotal role in diverse 

cellular processes. TGF-beta switches its role from a 

tumour suppressor in normal or dysplastic cells to a 

tumour promoter in advanced cancers. TGF-beta 

signalling has been considered a useful therapeutic target. 

6) Tight junction(s): Found significant in 

 Liver (By MI method with ‘p-value’ of 4.68E-03 

having 5 genes) 

 Testis (By MI method with ‘p-value’ of 6.31E-03 

having 4 genes) 

Function: In Humans tight junctions are intercellular 

junctions adjacent to the apical end of the lateral 

membrane surface. They have two functions, the barrier 

(or gate) function and the fence function. The barrier 

function of tight junctions regulates the passage of ions, 

water, and various macromolecules, even of cancer cells, 

through paracellular spaces. The barrier function is thus 

relevant to edema, jaundice, diarrhea, and blood-borne 

metastasis. The fence function maintains cell polarity. 

From [24] we can say that Zonula Occludens protein 

(ZO-1) which is a Tight Junction Protein is associated 

associated with different cellular functions with 

experimentally validated splicing level differences 

between Humans and Chimpanzees. 

7) Ubiquitin mediated proteolysis: Found significant 

in: 

 Liver (By MI method with ‘p-value’ of 1.28E-03 

having 4 genes) 

 Testis (By MI method with ‘p-value’ of 2.34E-03 

having 5 genes) 

Function: In Humans it performs mainly transcription 

regulation, DNA repair, receptor modulation, immune 

response, signal transduction and quality control. 

Whereas in Chimps protein ubiquitination mainly 

functions as a signal for 26S proteasome dependent 

protein degradation. The addition of ubiquitin to proteins 

being degraded is performed by a reaction cascade 

consisting of three enzymes, named E1 (ubiquitin 

activating enzyme), E2 (ubiquitin conjugating enzyme), 

and E3 (ubiquitin ligase). Each E3 has got specificity to 

its substrate, or proteins to be targeted by ubiquitination. 

8) Insuline signalling pathway: Found significant in: 

 Testis (By MI method with ‘p-value’ of 4.27E-03 

having 5 genes) 

Function: In Humans the insulin transduction pathway 

is an important biochemical pathway beginning at the 

cellular level affecting homeostasis. Signalling through 

the insulin/IGF (Insulin growth factor) 1 - like receptor 

pathway is a significant contributor to the biological 

aging process. 

The main difference (between Human and Chimp 

related to this pathway) is due to FOXO1 transcription 

factors. It is the key target of the insulin/IGF signaling 

pathway. In [25], [26] it is stated that FOXO1 expression 

is prominent in Human and Chimpanzee which is evolved 

to serve divergent functions in male and female gonad: 

such as germline in testis. 

9) O-Glycan biosynthesis: Found significant in: 

 Testis (By linear correlative method and MI 

method with ‘p-value’ of 2.12E-03 and 2.56E-05 

both having 3 genes) 

 Testis (By linear correlative method and MI 

method with ‘p-value’ of 2.12E-03 and 2.56E-05 

both having 3 genes) 

Function: The most common O-linked glycans are the 

mucin-type glycans. The mucin-type O-glycans have 

several cancer-associated structures, including the T and 

Tn antigens, and certain Lewis antigens. 

10) Oocyte meosis: Found significant in: 

 Heart (By linear correlative method with ‘p-value’ 

of 3.09E-03 having 4 genes) 

 Testis (By MI method with ‘p-value’ of 5.26E-03 

having 4 genes) 

Function: In Humans the quality of oocytes plays a 

key role in a proper embryo development. In Humans, 

oocytes of poor quality may be the cause of women 

infertility and an important obstacle in successful in vitro 

fertilization (IVF). 

In Chimps women with patterns of high oocyte loss 

experience earlier menopause. Chimpanzees in captivity 

live longer, and thus, similar to Humans, they may 

experience follicular depletion that precedes death by 

many years 

Apart from the above mentioned pathways some other 

pathways are also found to be significant. These are: 

11) Valine leucine and isoleucine degradation: Found 

significant in: 

 Brain (By liner correlative method with ‘p-value’ 

of 3.94E-04 having 4 genes) 

 Heart (By Linear correlative as well as by MI 

method with ‘p-value’ of 1.59E-06 and 4.8E-04 

having 5 and 3 genes) 

 Testis (By Liner correlative method with ‘p-value’ 

of 4.73E-03 having 3 genes)  

12)   Adherens junction:  Found significant in 

 Heart (By linear correlative method and MI 

method with ‘p-value’ of 1.64E-04 and 1.18E-02 

having 4 and 3 genes) 

 Testis (By MI method with ‘p-value’ of 9.8E-02 

with 3 genes) 

13) Parkinson’s disease: 

 Testis (By linear correlative method and MI 

method with ‘p-value’ of 1.36E-03 and 1E-02 

having 5 and 3 genes) 

In our work we have found that: cox6c, cox7b, ndufa2, 

ndufc2, ndufs3, ube2g2, ndufs4 genes are responsible for 

Parkinson’s disease. 

Their functionalities and impact on Parkinson’s disease 

have been given in [25]. 

14) Alzheimer’s disease:

 Kidney (By linear correlative method with ‘p-

value’ of 3.81E-03 having 5 genes) 
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 Testis (By linear correlative method and MI 

method with ‘p-value’ of 4.15E-3 and 9.3E-03 

having 5 and 4 genes) 

We have found that atp5g3, calm1, ndufa5, ndufb2, 

ppp3r1, cox6c, cox7b, apoe, ndufb7, ndufc1, ndufs4, 

psen2 genes are responsible for Alzheimer’s disease 

(A.D). 

Roll of the above mentioned genes in A.D have been 

discussed in [27], [28] 

15) Huntington’s disease  Found significant in 

 Testis (By linear correlative method and MI 

method with ‘p-value’ of 4.05E-04 and 9.3E-03 

having 5 and 4 genes) 

In our work we have found that: ndufb1, ndufb4, sod2, 

polr2k, ap2a2, polr2l, ndufs4 genes are responsible for 

Huntington’s disease. 

This result has been validated by [29], [30] which give 

the functionalities of some above mentioned genes in 

Huntington’s disease. 

Overall Functionalities of all the above mentioned 

pathways and genes associated with them can be found in 

[31]. 

IV. CONCLUSION AND FUTURE WORK 

In this work, we focused on significant pathways for 

differentially expressed genes in the five tissues and the 

novelty lies through non-linear MI based and linear 

correlative analysis being conducted via fuzzy clustering. 

By comparing them we found some new pathways in the 

different tissues via MI based non linear analysis. 

Our work has shown that genes associated in some 

disease related pathways may be associated in some 

physiological functions under normal conditions too. The 

probable answer of this dual nature can be found in 

differential coexpression analysis [32] which may be 

caused from different biological conditions indicating 

rewiring of transcriptional networks in response to 

disease or adaptation to different environments. For 

example, a group of genes may be under the control of a 

common regulator (a transcription factor or a epigenetic 

modification) that is active in one condition but absent in 

the other. 

As given in [33] differential network analysis reveals 

differences in connectivity and module structure between 

two networks. Functional annotation of these genes may 

lead to different biological pathways, having some of 

them involved in pathogenesis. 

As a future work we can check and compare the 

coexpression effect of differentially expressed genes 

under different conditions. Let there be two conditions. 

Then for first condition we can check the coexpression 

between differentially expressed genes. Next, we need to 

go for biological validation of the result. The same 

procedure can be repeated for the second condition. 

Finally, comparing the results (between two conditions) 

this can give us an idea about the effects of conditional 

dependency on differential expression. Here, we can also 

go for some sort of an untargeted approach, where not 

only the within module, but module to module 

differential coexpression will also be checked to get more 

precise condition specific correlated differential 

genes/modules. 

We can extend the analysis to searching for genes 

showing topological differences between two conditions 

which can further enlighten the key differences between 

two species. 
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