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Abstract—The sweet taste perception in human is mainly
due to the specific G protein- copulated heterodimeric
receptors (GPCR) T1R2-T1R3 and these receptors gathered
in the taste buds of the tongue. The sweet protein acts as an
important rule for molecular understanding of the taste
mechanisms. Therefore, the Homology modeling of the
closely related sweet taste receptors (T1R2-T1R3), is crucial
to provide an understanding of the interactions between the
sweetens and the receptors. 3A21 and 3Q41 were selected as
possible templates for TIR2 and T1R3, respectively based
on the phylogenetic evaluations. The models of the target
sequences were generated using the program MODELLER
V9.10. From the Ramachandran plot analysis it was shown
that 79% and 84% of the residues reside in the core region
for TIR2 model and T1R3 model, respectively.

Index Terms—homology modeling, human sweet taste
receptors, MODELLER

. INTRODUCTION

There are five crucial taste traits able to be sensed by
human being, which includes sweet, umami, bitter, salty,
and sour. The G protein-coupled receptors are referred to
sweet and umami taste, and the sweet state receptors
(T1R2/T1R3) are heterodimeric belongs to the TR family

closely related to G protein-coupled receptors (GPCR), [1]

and these sweet taste receptors gathered in the taste buds
of the tongue [2]. Furthermore, they are able to detect all
class of sweeteners including sugars, artificial sweeteners,
amino acids, and sweet-tasting proteins [3]. [4]. And they
have different ligand binding sites. However, there is yet
a clear study to give an insight of the binding ability of
the human sweet taste receptors T1IR2 and T1R3 [5].

In over 108 million protein sequences that have been
experimentally determined, there is only a little humber
of those proteins with solved structures. Since the gap
between the protein sequence and the structure is huge,
the computational tools are needed to solve the protein
structures [6]. The best method is Homology modeling or
comparative modeling [7]. This method has been proven
to successfully predict a 3D tertiary structure of unknown
protein structure using known protein templates. [8].

In homology modeling, the sequence identity and
similarity between the template and the target determine
the accuracy of the model. High accuracy model will be
produced when the sequence identity is more than 50%.
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If the sequence identity is less than 30%, it may produce
a model with a possible error [9].

Fig. 1 shows the homology modeling process includes
template selection, sequence alignment, model building
and model refinement [7].

Figure 1. Flow chart of the structure prediction process of human
sweet taste receptors.

Il. METHODOLOGY

A. Template Selection and Sequence Alignment

The template searching was performed using Basic
Local Alignment Search Tools (BLAST), which is a tool
to search for sequence similarities for proteins and
nucleotides [10], and subsequently using MEGAS5 to
construct the phylogenetic trees for both TIR2 and T1R3
to determine the closest template according to their
molecular evaluation [11]. The target and the template
sequences were aligned together by using the ClustalW.
[12].

B. Model Building

Different models were generated using MODELLER
VV9.10 employing the method of satisfaction of spatial
restraints [13]. The models with the lowest energy were
chosen for the model evaluation.

I1l.  RESULTS AND DISCUSSION
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The results shows that the crystal
Streptomyces avermitilis beta-L- Arabinopyranosidase
(3A21) and Crystal structure of the GIuN1 N-terminal
domain (3Q41) are the templates for TIR2 and T1R3
respectively as shown in Fig. 2. The sequence alignment
between the target and the template sequences was
performed using Clustalww as shown in Fig. 3. The
sequence identity was 14.98% and 20.05% for T1R2 and
T1R3 respectively. Fig. 4 shows the 3D structure of both

| 3H6G
LaaLt
| 3QEK
| 3QEL
T1R2
3A21
2PM9
4F11
3mQ4
J{ 3sM9
i 2647
100 264y
3LMK
2 _MDEWK
1001 3ks9
8 4F11
TIR3
57 —=3a41
100— 3QeL
1DL2
1007 1B8A
® IanEL
7 | 20K0
270
‘3F2R

3HUT

Figure 2. The phylogenetic analysis for both TIR2 and T1R3

T1R2 and T1R3.
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Figure 3. The ClustalW alignment for TLR2 and T1R3
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Figure 5. Ramachandran Plot of T1IR2 -3A21 and T1R3- 3Q41.
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The Ramachandran plot analysis was performed in
order to examine the quality of the models [14], and the
results for this plot shows that TLR2 model had 77.2% of
the residues located in the most favoured regions, while
84.2% for the T1R3 model, correspondingly as shown in
Fig. 5.

IV. CONCLUSION

The aim of this project was to predict the 3D structure
for the human taste receptors, which are T1IR2 and T1R3.
This was done by identification of the template structure
and performing the sequence alignment between the
target sequence and the template sequence.
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