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Abstract—Cadmium (Cd) is a heavy metal that be a 

source of concern for industrial workers and it was 

proposed in the formation of advance glycation end 

products (AGEs) such as methylglyoxal (MG). MG 

have recently attracted much attention because of 

their possible clinical significance in chronic and age-

related diseases. Based on previous research, 

methylglyoxal formation can be accelerated by metals 

in vitro. The role of Cd in the formation of MG and 

hydrogen peroxide has not been much studied. Thus, 

our study aims to measure the formation rate of MG 

and hydrogen peroxide in the presence of Cd in vitro. 

This research was divided into 4 groups (1 control 

group and 3 treatment groups), than we set carbonyl 

compound assay, methylglyoxals assay, and hydrogen 

peroxide assay. For analyzing of the data, SPSS 

software version 17 was used and was examined by 

ANOVA and regression correlation test. For all 

outcomes, a nominal p-value of p < 0,05 was 

considered significant. We found that there are 

significant correlation between Cd exposure on the 

formation of hydrogen peroxide and methylglyoxal (p 

< 0,05) in nonenzymatic glycation of proteins by 

glucose. The increased Cd level accelerate the 

formation of methylglyoxal and hydrogen peroxide. 
 

Index Terms—Cadmium, kinetics first order, methylglyoxal, 

glycated protein, hydrogen peroxide 

 

I. INTRODUCTION 

Cadmium (Cd) is typically a heavy metal used in 

rechargeable batteries and for the production of special 

alloys. Although emissions in the environment have 

markedly declined in most industrialized countries, Cd 

remains a source of concern for industrial workers and 

for populations living in polluted areas, especially in less 

developed countries. In the industry, Cd is hazardous 

both by inhalation and ingestion and can cause acute and 

chronic intoxications. Cd dispersed in the environment 
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can persist in soils and sediments for decades. When 

taken up by plants, Cd concentrates along the food chain 

and ultimately accumulates in the body of people eating 

contaminated foods. Cd is also present in tobacco smoke, 

further contributing to human exposure. Further, the most 

salient toxicological property of Cd is its exceptionally 

long half-life in the human body. Once absorbed, Cd 

irreversibly accumulates in the human body, in 

particularly in kidneys and other vital organs such the 

lungs or the liver. Acute exposure to Cd in vivo causes 

dysuria, polyuria, chest pain, fatigue, headache, and 

hepatooxidative [1]-[3]. Role of this heavy metal was 

proposed in the formation of advance glycation end 

products (AGEs) by nonenzymatic reaction [4]. 

The nonenzymatic reaction between reducing sugars 

and proteins, known as glycation, has received increased 

attention in nutritional and medical research. 

Nonenzymatic glycation is a complex series of reactions 

between reducing sugars and amino compounds. As the 

first step of AGEs formation, the free amino groups of 

proteins in the tissues react with a carbonyl group of 

reducing sugars, such as glucose, to form glucosamines 

via a Schiff base by Amadori rearrangement. Both Schiff 

base and Amadori product further undergo a series of 

reactions through dicarbonyl intermediates [e.g., glyoxal 

(GO), methylglyoxal (MG) and 3-deoxyglucosone], to 

form AGEs. GO and MG, the two major α-dicarbonyl 

compounds found in the human body, are extremely 

reactive and readily modify lysine, arginine, and cysteine 

residues of proteins [5]. Reactive carbonyl compounds 

such as GO and MG have recently attracted much 

attention because of their possible clinical significance in 

chronic and age-related diseases [6]-[8]. For example, 

MG mediates vascular inflammation in human 

endothelial cells [9], gastric ulcer [10], and renal disease 

[11]. 

In recent years, a number of protein crosslinks have 

been isolated that are thought involve the MG. MG is a 

potent protein and nucleic acid modifying agent found in 

all mammalian systems as a consequence of energy 

metabolism. MG is produced through spontaneous 

phosphate elimination from glycolytic pathway 
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intermediates. MG levels also respond to signaling events 

associated with cell death, indicating that anabolic 

activities for MG production that may be present in 

mammalian systems as they are in bacteria, although that 

is yet to be demonstrated. The physiological 

concentration of MG is thought to range between 256 nM 

in blood (2.4 µM in diabetics), 1µM in plasma and 15 

µM in urine in healthy human. However, up to 310 µM 

has been reported where assay systems have quantified 

reversibly protein-bound methylglyoxal along with 

unbound. Ninety-nine percent of methylglyoxal is 

thought exist in reversibly bound state to protein or other 

biological ligands [12], [13].  

The previous study described that the reaction of MG 

with ceruloplasmin may lead to decreased feroxidase 

activity in vitro [14]. In addition, the ferritin/MG/lysine 

system may lead to oxidative DNA damage via the 

generation of ROS by the Fenton-like reaction of free 

iron ions released from oxidatively damaged ferritin [15]. 

Based on previous research, methylglyoxal formation can 

be accelerated by metals in vitro. The proposed 

mechanism  explained that the metal M
n+

 (e.g., Fe
2+

, Cu
2+

, 

and so on) can catalyze the 2,3-enediol and formed MG 

and hydroperoxide [16]. The role of Cd in the formation 

of MG and hydrogen peroxide has not been much studied. 

Thus, our study aims to measure the formation rate of 

MG and hydrogen peroxide in the presence of Cd in vitro. 

II. MATERIAL AND METHODS 

We modify the protein glycation by using Bovine 

serum albumin as the protein which reacts with high 

concentration D-glucose. Cadmium which used in this in 

vitro model is (CH3COO)2Cd. This research was divided 

into 4 groups (1 control group and 3 treatment groups). 

Control: BSA 125 mM D-glucose + 125 mM, P1: + 125 

mM D-glucose + 125 mM + (CH3COO)2Cd 0.003 mg / L; 

P2: + 125 mM D-glucose + 125 mM + (CH3COO)2Cd 

0.3 mg / L P3: + 125 mM D-glucose+125 

mM+(CH3COO)2Cd 30 mg / L. Solution was incubated 

at 37° C and observed on days 2, 4, 6, and 8. 

A. Carbonyl Compound Assay 

Sample derivatization. Two 1-mg aliquots are needed 

for each sample to be assayed. Samples are extracted in a 

final concentration of 10% (w/v) TCA. The precipitates 

are treated with 500 μL of 0.2% DNPH or 500 μL of 2 M 

HCl. Samples are incubated at room temperature for 1 h 

with vortexing at 5-min intervals. The proteins are then 

precipitated by adding 55 μL of 100% TCA. The pellets 

are centrifuged and washed three times with 500 μL of 

the ethanol:ethyl acetate mixture. The pellet is then 

dissolved in 600 μL of 6M guanidine hydrochloride. The 

carbonyl content is determined by reading the absorbance 

at the optimum wavelength 390 nm [17]. 

B. Methylglyoxals Assay 

Methylglyoxals are estimated according to the 

modified method of Racker [18]. Twenty-five μl of 

samples was added to 350 μl of DNPH [0.1% DNPH in 

2N HCl]. Then to each tube 2.125 ml of distilled water 

was added. Then it was incubated for 15 minutes at 37
0
C. 

After the incubation 1.5 ml 10% NaOH was added and 

absorbance was read at 576  nm using spectrophotometer. 

MG levels are expressed in percent absorbance MG and 

dicarbonyl absorbance. 

C. Hydrogen Peroxide Assay 

90 ml of sample, 10 ml of methanol and 900 ml of 

xylenol orange  reagent containing ferrous ions were 

added successively and absorbance was noted at 560 nm 

[19]. 

D. Statistical Analysis 

MG and hydrogen peroxide formation were analyzed 

by first order kinetics equation. Then calculated the 

constant of a first order kinetic. For analyzing of the data, 

we used ANOVA and regression correlation test. For all 

outcomes, a nominal p-value of p < 0.05 was considered 

significant. 

III. RESULTS AND DISCUSSION 

A. The Role of Cd in Methylglyoxal Formation 

The average levels of MG produced glucose and 

protein reactions are presented in Table I.  

TABLE I.    MG LEVELS (%) (MEAN ± SE) OF VARIOUS INCUBATION TIMES 

AND LEVELS OF CD 

Groups 
Times Incubation (day) 

2 4 6 8 

Control 
5.155 ± 

0,12 

5.785 ± 

0.47 

14.006 ± 

3.28 

16.097 ± 

2.87 

+ (CH3COO)2Cd 
0.003 mg / L 

8.333 ± 
0.23 

19.804 ± 
0.95 

41.333 ± 
3.09 

45.323 ± 
1.23 

+ (CH3COO)2Cd 

0.3 mg / L 

10.417 

± 1.46 

18.821 ± 

2.33 

41.623 ± 

2.19 

67.432 ± 

1.98 

+ (CH3COO)2Cd 
30 mg / L 

11.515 
± 2.32 

19.545 ± 
3.29 

39.847 ± 
2.21 

98.976 ± 
4.86 

 

ANOVA test results showed that there were significant 

differences between treatment groups (p <0.05). First 

order reaction rate of formation methylglyoxal are 

presented in Fig. 1. 

 

Figure 1. First order kinetics of formation methylglyoxal 

Reaction rate constants of MG formation calculated 

using regression analysis (Table II). 
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TABLE II.  REACTION RATE CONSTANTS (K) OF MG FORMATION 

Groups 
Methylglyoxal 

k (day-1) r p (<0.05) 

Control 0.215 0.943 0.047 

+ (CH3COO)2Cd 0.003 mg / L 0.291 0.955 0.045 

+ (CH3COO)2Cd 0.3 mg / L 0.320 0.996 0.004 

+ (CH3COO)2Cd 30 mg / L 0.358 0.993 0.007 

 

Glucose combines a delicate balance between 

chemical stability and chemical reactivity for metabolism 

synthesis. It also exists in several structural synthesis, 

divided based on the conformations: two major forms of 

pyranose (six-member rings with anomeric carbon at 

member rings with  carbon at position 1, one minor form 

of furanose (five-member ring), and an open aldehyde. 

However, the linear aldehyde form is essential 

intermediate for conversion among these forms. The 

linear aldehyde glucose is more reactive structure that 

can bind to the amine group on the protein become 

glycated protein. In Table II shows that increasing 

concentrations of Cd has positive effect on the formation 

rate of glucose. This is consistent with the mechanism 

proposed by Voziyan et al [4], that metals can accelerate 

the formation of compounds dicarbonyl [e.g., glyoxal 

(GO), methylglyoxal (MG) and 3-deoxyglucosone]. 

MG as a side-product of glycolysis consequently arises 

from an increased flux during hyperglycemia. MG has 

been postulated to play a role in the development of 

hypertension [20]. Studies using animal model and cell 

cultures showed a significant increase in blood pressure 

to coincide with elevated MG level in plasma and aortic 

tissues [21]. However, functional links between MG 

biogenesis and hypertension, in part mediated by ROS 

and AGEs, have only been documented in rat model but 

not yet in humans under these conditions. 

B. The Role of Cd in Hydrogen Peroxide Formation 

The average levels of Hydrogen peroxide produced 

glucose and protein reactions are presented in Table III.  

TABLE III.  HYDROGEN PEROXIDE LEVEL (µM) (MEAN ± SE) OF VARIOUS INCUBATION TIMES AND LEVELS OF CD 

Groups 
Times Incubation (day) 

2 4 6 8 

Control 0.394 ± 0.02 0.825 ± 0.12 1.524 ± 0.13 3.944 ± 0.92 

+ (CH3COO)2Cd 0.003 mg / L 0.502 ± 0.01 3.621 ± 0.91 6.472 ± 0.43 19.218 ± 0.75 

+ (CH3COO)2Cd 0.3 mg / L 0.556  ± 0.03 4.213 ± 0.88 6.794 ± 0.38 35.514 ± 0.67 

+ (CH3COO)2Cd 30 mg / L 0.717 ± 0.02 4.805 ± 0.67 6.794 ± 0.89 52.671 ± 0.69 

 

ANOVA test results showed that there were significant 

differences between treatment groups (p <0.05). First 

order reaction rate of formation hydrogen peroxide are 

presented in Fig. 2. 

 

Figure 2. First order kinetics of formation hydrogen peroxide 

Reaction rate constants of hydrogen peroxide 

formation calculated using regression analysis (Table IV). 

TABLE IV. REACTION RATE CONSTANTS (K) OF HYDROGEN 

PEROXIDE FORMATION 

Groups 
Hydrogen Peroxide 

k (day-1) r p  (<0.05) 

Control 0.376 0.996 0.040 

+ (CH3COO)2Cd 0.003 mg / L 0.576 0.973 0.027 

+ (CH3COO)2Cd 0.3 mg / L 0.647 0.977 0.033 

+ (CH3COO)2Cd 30 mg / L 0.662 0.971 0.029 

 

Environmental stresses are known to induce hydrogen 

peroxide and other toxic oxygen species production in 

cellular compartments and result in acceleration of lipid 

peroxidation and other oxidative damage. Hydrogen 

peroxide being a strong oxidant that can initiate localized 

oxidative damage in cells leading to disruption of 

metabolic function and loss of cellular integrity resulting 

in senescence promotion. It also changes the redox status 

of surrounding cells. 

Based on the proposed mechanisms by Voziyan et al 

[4], hydrogen peroxide formed in a phase when 

conversion of  2,3-enediol to dicarbonyl compound. As 

in the formation of MG, the hydrogen peroxide 

concentration increases concordant with levels of Cd. 

In human, hydrogen peroxide is produced in many 

different cell types, including fibroblast, vascular 

endothelial, smooth muscle, and inflammatory cells . It is 

known to act as a cellular signaling molecule within 

blood vessels, and it plays key roles in regulating 

vascular smooth muscle cell (VSMC) growth, 

differentiation, migration, and vascular inflammation. 

Hydrogen peroxide has been shown to cause constriction 

in a variety of vascular beds under quiescent conditions, 

and it can induce vasoconstriction in a number of arteries 

in vitro, including rat aorta, vena cava and pulmonary 

artery, canine basilar artery, and human placental arteries 

[22].  

This study is similar with a study by Adrover et al [23]. 

They showed that formation of glycoaldehyde from 

glycated protein was kinetically happen in first order 

reaction and the rate constant was 0.33 ± 0.03 h
-1

.   

IV. CONCLUSION 

©2014 Engineering and Technology Publishing
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We found that there are significant correlation between 

Cd exposure on the formation of hydrogen peroxide and  

methylglyoxal (p < 0.05) in nonenzymatic glycation of 

proteins by glucose. The increased Cd level accelerate 

the formation of methylglyoxal and hydrogen peroxide. 
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