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Abstract—Today, modern technology has provided more 

powerful tools to evaluate the information related to heart 

sounds that traditional tools like stethoscope cannot achieve. 

One of the most common methods used for listening and 

tracking the heart sounds is to record them with special 

devices. The recorded heart sounds is known as PCG 

(phonocardiogram) signal. It is a particularly useful 

diagnosis tool since it contains different timings and relative 

intensities of heart beat sounds which are directly related to 

heart activity. The objective of this paper we develop a 

simple model for analysing the PCG signal in order to 

distinguish between normal and abnormal heart sounds. 

This analysis is carried out by using discrete wavelet 

transform. By using the discrete wavelet transform (DWT) 

the PCG signal is decomposed in to 7 stages. The average 

standard deviation of the detailed coefficients at each stage 

is calculated for each signal. The slopes of these curves for 

each case are obtained by plotting the average standard 

deviation of the detailed coefficients at each level detail. The 

analysis of these slopes shown that the discrimination 

between the normal signals from abnormal is possible 

 

Index Terms—heart sounds, phonocardiogram, model, 

discrimination, level decomposition, average standard 

deviation, discrete wavelet transform. 

 

I. INTRODUCTION 

The heart and during its physiological activity, 

produces sounds having, large dynamic range and fastly 

changing low frequency content. Clinician listen to the 

heart sounds using stethoscope in order to make a 

diagnosis on heart defects. Heart defects can range   from 

aortic regurgitation and mitral regurgitation to ejection 

click and systolic murmur. However, the diagnosis of 

such heart defects with the stethoscope along with human 

ear present some limitation. 

Nowadays, modern technology has provided more 

powerful tools to evaluate the information related to 

heart sounds that traditional tools like stethoscope cannot 

achieve. One of the most common methods used for 

listening and tracking the heart sounds is to record them 
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with special devices. The recorded heart sounds is known 

as PCG (phonocardiogram) signal. It is a particularly 

useful diagnosis tool since it contains different timings 

and relative intensities of heart beat sounds which are 

directly related to heart activity. With the improvements 

of computers power, the PCG signal has digitally been 

stored, managed, and manipulated for examining its 

frequency and temporal content. Moreover, the 

developpement   of new digital signal processing 

techniques, such as a pattern recognition and time-

frequency analysis and representation has improved the 

PCG signal analysis and therefore make it actually as a 

non-invasive technique in aid to  heart activity diagnosis. 

To analyse the PCG data, the way of how the PCG 

signal is generated and its features are correlated to heart 

activity must   be well understood. It is clearly explained 

in literature how this correlation is established mainly 

from a timing point of view as is illustrated in Fig. 1. 

 

Figure. 1. Correlation between the electrocardiogram (ECG) and the 
cardiac sounds 

As it is shown in Fig. 1 the PCG signal is composed 

from at most four sounds known as S1, S2, S3, S4. S1 is 

the first heart sound at the beginning of the 

depolarization of the ventricle, frequency band and 

duration are receptively 30-100 Hz and 50-100ms. S2 is 

the second heart sound and it identified as the sound 

between closure of the aorta and artery valves of the 

lungs. Frequency band and duration are respectively 100-

200 Hz and 25-50ms. S3 is the third heart sound. It 

results following the entire filling of the ventricle with 

blood. It is a diastolic sound. S4 is the fourth heart sound 

and is generated after the completeness of   atriums 

depolarization. It is also a diastolic sound. The order of 

the basic heart sounds is chronologically close to each 

other and they overlap with the heart beat and the 

murmurs. For defects where the heart beat is high, these 
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sounds can not easily be separated by the human ear. 

Therefore, the detection of the heart beat; the heart 

sounds and their separation on them from each other 

require expert physicians. On the other hand, in many 

applications it is desirable to transform a sound 

waveform into a signal which is more useful than the 

original. For example in speech processing, the 

articulation rate can be slowed down to make degraded 

speech more intelligible. Similarly, in 

phonocardiography, the heart sounds can be slowed 

down to improve physician’s capability in recognition 

and discrimination of dissimilarities resulting from 

cardiac disorders. 

The pathological conditions of the cardiovascular 

system generally cause abnormal murmurs and 

aberrations in heart sounds before they are reflected as 

other symptoms [1]. The auscultation technique in which 

a stethoscope is used to listen the sounds of a body is 

poorly suited to investigate the heart abnormalities. By 

analyzing the phonocardiogram (PCG) which is a 

recording of the acoustical waves produced by 

mechanical action of the heart by modern digital signal 

processing technique give more accurate and valuable 

information about the heart condition. A PCG consist of 

the two components, the heart sounds and heart murmurs, 

as acoustic vibrations. The heart sounds are low-

frequency transient signals produced by the heart valves. 

The heart murmurs are noise-like signals caused by the 

turbulence of blood flow [2]-[4].  

The first sound (S1) and the second (S2) cardiac 

sounds consist respectively of two major majors 

components. The components of the sound S1 are M1 

and T1. M1 is due to closure of the mitral valve and T1 is 

due to closure of the tricuspid valve. The second Sound 

S2 is also composed of two components. The component 

A2 which is due to the cloture of the aortic valve and the 

component P2 which is due to the closure of the 

pulmonary valve [5]. 

Most recent studies aiming at better understanding of 

the structural content (signal components) of heart 

sounds perform Time-Frequency Representation (TFR) 

and analysis such signals considered as transient signals. 

The studies showed that the new TFR techniques are 

powerful tools in analysing the basic mechanism implied 

in the production of the heart sound components. 

However, they also showed that their application to the 

analysis and synthesis of short transient signals like S1 

and S2 is a complex and difficult task due to the inherent 

limitations of the TFR techniques for extracting the basic 

characteristic of each component contained in these multi 

component signals [5]-[13].The research concentrated on 

Short Time Fourier Transform (STFT) analysis and 

transient chirp modelling of the heart sound as TFR. 

However, STFT is a useful tool in analysis of non 

stationary signal such as heart sounds, the problem with 

the STFT is a compromise in resolution. The smaller the 

window used, the better quickly changing components 

are picked up, but slowly changing details are not 

detected very well to investigate exact feature of the 

signal. If a larger window is used, lower vibrations may 

be detected, but the localization in time, which is 

important to determine the closure and opening of the 

heart valve becomes worse. 

The wavelet transform has demonstrated the ability to 

analyze the heart sounds more accurately than other 

techniques.In traditional cardiac auscultation, murmurs at 

very low frequencies may not be heard, but can be 

clearly seen in a spectrogram representation of the sound. 

Also separation of heart murmurs into innocent and 

pathological murmur by auscultation is strongly 

dependent on listener’s experience and training. 

Software-aided heart sound analysis has improved 

reliability of diagnosis, by efficient classification of 

signals. 

II. MODEL USED FOR PCG DISCRIMINATION 

A model used for differentiation or discrimination 

between normal and abnormal heart sounds using the 

discrete wavelet transform (DWT) can be provide by the 

block diagram as shown in below Fig. 2: 

 

Figure 2.  General block diagram of proposed model 

In this paper, we are interested in the application of the 

model for PCG signals analysis using discrete wavelet 

transforms. The PCG signals we are interested are 

classified into two groups: 

 

Figure 3. The PCGs signal of the first group (N, IM, CA). 
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*The first group: group is concerned a  normal PCG 

signal and two others PCG signals of similar morphology 

without murmur: the innocent murmur and the 

coarctation of the aorta (Fig. 3) 

*The Second group: group is concerned with two PCG 

signals with murmur: the pansystolic and the aortic of the 

regurgitation (Fig. 4). 

 

Figure. 4. The PCG signal of the second group (MR, AR)  

By using ‘Daubechies 7’ as mother wavelet the PCG 

signals are decomposed in to 7 stages. The average 

standard deviation of the detailed coefficients at each 

stage (or level detail) is calculated for each signal. The 

slopes of the curves for each case are obtained by 

plotting the standard deviation of each level detail. The 

results we obtain are shown to be able to discriminate 

between the normal signals from abnormal. 

III. WAVELET TRANSFORMS 

Wavelet transforms have become well known as 

useful tools for various signal processing applications. 

The continuous wavelet transform is best suited to signal 

analysis [14]. 

Its semi-discrete version (wavelet series WS) and its 

fully discrete one (the discrete wavelet transform DWT) 

have been used for signal coding applications, including 

image compression [15] and various tasks in computer 

vision [16]. 

Given a time-varying signal s(t) , wavelet transforms 

consist of computing coefficients that are inner products 

of the signal and a family of “wavelets”. In a continuous 

wavelet transforms, the wavelet corresponding to scale 

“a” and time location “b” is : 

        (a,b)=
//

1

a
(

a
bt

)            (1) 

where (t) is the “mother wavelet” which can be thought 

of as a band-pass function. The factor //a  is used to 

ensure energy preservation [12]. There are various ways 

of discretizing time-scale parameters (b, a), each one 

yields a different type of wavelet transform. 

The continuous wavelet transform (CWT) was 

originally introduced by G.Grossmann and J.Morlet [17]. 

Time t and the time-scale parameters vary continuously. 

      CWTs(t);a,b =  s(t) (a,b)*(t)dt            (2) 

(the asterisk  stands for complex conjugate). 

Wavelet series (WS) coefficients are sampled CWT 

coefficients. Time remains continuous but time-scale 

parameters (b, a) are sampled on a so-called “dyadic” 

grid in the time-scale plane (b,a) [18]. A common 

definition is: 

C jk =CWTs(t); a = 2
j
, b = k 2

j
with j, k Z       (3) 

The wavelets are in this case : 


jk
(t) = 2

2/j
 ( 2

j
t - k)                (4) 

The discrete wavelet transform (DWT) has been 

recognized as a natural wavelet transform for discrete-

time signals. Both the time and time-scale parameters are 

discrete. 

The discretization process partially depends upon the 

algorithm chosen to perform the transformation. The 

,j kC  could be well approximated by digital filter banks. 

By using Mallat’s [19] remarkable fast pyramid 

algorithms which involve use of low-pass and high-pass 

filters. 

The Mallat algorithm is in fact a classical scheme 

known in the signal processing community as two-

channel subband coder. The original signal S, passes 

through two complementary filters and emerges as two 

signals: signal approximation “A” and signal detail “D”.  

The approximation is the high scale, low-frequency 

components of the signal. The details are the low scale, 

high-frequency components. The filtering process, at its 

most basic levels, look like this. 

IV. RESULTS AND DISCUSSION 

Software is developed and implemented. This is 

related to using to the analysis DWT (discrete wavelet 

transform) of the two groups of PCG signals already 

above described (see Table I).  

TABLE I:  PHONOCARDIOGRAM SIGNAL USED 

Type of  
the PCG 

Normal Innocent murmur Coarctation of the 
aorta 

Pana 
systolic 

Aortic of the 
Regurgitation 

Abbreviation N IM CA PAS AR 

Frequency sampling 

(Hz) 

 

8012    

 

8012 

 

8012 

 

8012 

 

8012 
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The analysis of PCG signals using wavelet transforms 

has shown that it is important to find out the appropriate 

wavelet. The study carried out on different types of 

orthogonal and bio-orthogonal wavelet at different levels 

using the standard deviation, and the error of rebuilding 

 or
 between synthesized signal and the original signal 

used as a discrimination parameter has shown that db7 

can be used in PCG signal analysis. In fact its 

morphology and duration can highly be correlated to the 

different sounds in the PCG. In this case the original 

PCG signal is decomposed over seven levels and the 

seventh detail of decomposition is considered as the 

synthesised signal. According to the results we obtain, 

the error  or
 can be considered as an important 

parameter in the classification of PCG signals. In fact, 

these results showed that the variation of this parameter 

is very sensible to the added murmur intensity in the 

PCG signals.  

The error   or
 is given by :  

             or
=

N

srso

N

i
ii





1

                        (5) 

                          

where     soi
 : sample of the original signal  so  ; and 

sri
 : sample of the synthesized signal sr .  

A.  Analysis of the PCG Signals of the  First Group 

For example the two internals components of the 

sound S1 (M1 and T1) and the two components A2 and 

P2 of the sound S2 are clearly distinguished in Fig. 5b 

which “db7” is used as mother wavelet 

 
a 

 
b 

 
c 

Figure 5. Discrete wavelet transform analysis of  one cycle of the 
normal Phonocardiogram signal with: a) the mother wavelet “db5”; b) 

the mother wavelet “db7”; c) the mother wavelet “db9”. 

In Fig. 5a and Fig. 5c where db5 and db9 are used as 

mother wavelet these components are not clearly 

depicted.signals at corresponding levels of 

decomposition, although originally they got similar 

morphology. If the detail d7 in figure 6a reveals clearly 

the two internal components of the first sound S1 (M1 

and T1) and those of the second sound S2 (A2 and P2), 

the detail d7 in figure 6b, on the other hand, does reveal 

several components; at least three significant.  This is 

very significant for the establishment of a medical 

diagnosis. 

a 

b 

Figure 6: Discrete wavelet transform application of a) the normal 
PCG(N) , b) the coarctation of the aorta (CA). 
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Fig. 6 illustrates the results of the analysis of two PCG 

signals of this first group (N and CA). Es it illustrated, 

they are some difference between these 

Also the details d2 and d3 of the figure 6b reveal only 

the sound S2 (S1 is being almost completely filtered) the 

corresponding details in Figure 5a reveal the sound S2 as 

well as S1. 

The calculation of the average standard deviation at 

each detail level (d1 at d7) revealed visible differences 

between these three PCG signals of this first group. The 

average standard deviation is represented across each 

detail level (d1 at d7) for each PCG signal (N, IM, CA).  

The curve is given in Fig. 7. 

 

Figure. 7. Representation of the variation of the standard deviation of 
the detailed coefficients , during one cycle, for the cases N, IM and CA. 

Such a representation, as it is noted, provides us with 

much more differences between PCG signals that 

illustrated in Fig. 6.  

 
a 

 
b 

Figure 8: Representation of the variation of the standard deviation of 
the detailed coefficients of the cases N, IM and CA for a) the sound S1 

and b) the sound S2. 

Fig. 8a and Fig. 8b, relating to respectively the cardiac 

sounds S1 and S2, gives a more appreciable 

representation of the average variation of the standard 

deviation of the details d1 to d7 of the PCG signals “N,” 

“IM” and “CA”. 

One notices according to these figures that the signal 

“CA” seems to have a variation more accentuated 

compared to the signal “N” than the signal “IM”.  This 

demarcation is perceived better on the second sound (S2) 

than the first sound (S1). 

This variation very accentuated according to the 

analysis of S2 than that of S1, concerning the signal 

“CA” can be explained by the higher number of internal 

components in S2 for this signal. Fig. 9 represents the 

analysis of the signal S2 by the continuous wavelet 

transform (CWT). This illustration confirms this result 

[11] while revealing an additional component “C” in the 

case of the signal “CA”. Such component does not exist 

in the case of the signals “N” and “IM”. 

 

Figure 9: Continuous wavelet transform (CWT) application of the N, 

IM and PCG cases for the sound S2. 

These results can also be illustrated  by Fourier  

transform (TF) analysis of the second sound (Fig. 10c) in 

which  one  still notices the exisence of this component 

“C” concerning the  signal “CA” [8],[10]. 

 
a 

 
b 
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c 

Figure. 10. The Fast Fourier transform (FT) application of the second 
cardiac sound S2 for : a) The normal PCG  signal (N); b)The innocent 

murmur signal (IM); c) The coarctation of the aorta signal (CA). 

B. Analysis of the PCG Signals of the Second Group. 

We can also use this method of the average standard 

deviation of the coefficients representing the details 

obtained by the use of the discrete wavelet transform to 

analyze the two PCG signals of the second group: AR 

and PAS.  

As it is illustrated in Fig. 11 the variation of  the 

average standard deviation according to DWT level 

decomposition is completely different from the normal  

case (Fig. 7). 

The use of this technique in the analysis of the PCG 

signals having murmurs can provide us with additional 

information. 

 

Figure. 11. Representation of the variation of the standard deviation of 
the detailed coefficients of  the panasystolic (PAS) and the aortic 

regurgitation (AR). 

Indeed the variation of the average standard deviation 

in this case is rather increasing with increases level 

decomposition d1 at d7 with the systolic type (PAS) 

signal and decreasing with increased level decomposition 

d1 at d7 for the diastolic type (AR) signal.   

V. CONCLUSION 

The results we obtained using the analysis of standard 

deviation variation according to each level of DWT 

decomposition show that discrimination between normal 

and abnormal phonocardiogram signals is possible. In 

fact, it is shown that the average standard deviation 

variation may increase or decrease with increased level 

of decomposition d1 at d7 according to the nature of 

PCG signals under study. 

Five different signals: the normal signal, the innocent 

murmur, the aortic of the coarctation, the aortic 

regurgitation and the pansystolic case, have been 

analysed and the average standard deviation according to 

each level of DWT decomposition studied to confirm this 

results. 

The difference between PCG signals of similar 

morphology have been found without any difficulties.  

This result can provide more features and 

characteristics of the PCG signals. This will help 

physicians to obtain qualitative and quantitative 

measurements of the time-frequency characteristics of 

the PCG signals and consequently aid to diagnosis. 

Normal and pathological signals have been considered to 

give some idea of the generality of the evaluation. 
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