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Abstract—We consider the problem of de novo DNA motif 

discovery. The position weight matrix (PWM) model has 

been extensively used, yet this model makes the assumption 

that nucleotides at different positions are independent of 

each other. Recent results have shown that nucleotides 

bound by transcription factors often exhibit adjacent or 

nonadjacent dependencies. We address this problem by 

devising positional dependency models capable of capturing 

adjacent dependencies and non-adjacent dependencies 

(SPWDM). Our algorithms are based on Gibbs sampling to 

update the model parameter and dependencies structure. 

We compare two scoring functions: 
-score and a 

conditional probability based score. We also improve 

several Gibbs sampling stages. Experiments are carried out 

on simulated and real data, showing that the SPWDM 

model makes improvement over pure PWM. The 

modifications to the Gibbs sampling algorithm are also 

shown to be effective. 

 

 

Index Terms—DNA motif discovery, position weight matrix, 

position-dependent model, Gibbs sampling 

 

I. INTRODUCTION 

Two key areas in bioinformatics and genome analysis 

are gene identification and prediction of their functions. 

These relate to the promoters and other regulatory 

elements. Interpreting the “transcriptional regulatory code” 

represents a major current challenge. Transcription 

factors (TFs) activate or repress gene expression through 

binding regulatory regions adjacent to the target gene. 

One TF may bind to the regulatory regions of several 

genes and the corresponding binding sites would be 

similar in terms of length and pattern, which is called a 

motif. These DNA motifs are fairly short, 5 to 20 base-

pairs (bp), they recur throughout the genome associated 

with co-regulated genes, often recur several times within 

a regulatory domain and are generally not orientation 

specific. Motif finding is to find such patterns within a 

sequence set associated with a group of regulated genes. 

                                                           
Manuscript received January 4, 2013; revised March 19, 2013. 

This work supported by the project: “Tools for Motif Recognition in 

Fungi” at the Department of Computer Science and School of 

Biological Sciences in the University of Liverpool, funded by BBSRC. 

Finding DNA motifs has been addressed for decades but 

still remains a major challenge in computational biology.  
The main difficulty is that the degree of conservation 

of binding sites can vary significantly. The alignment of a 

set of binding sites can be seen as the representation of a 

motif. A motif is usually represented by a string [1] or a 

matrix. We focus on the matrix representation. In a 

position weight matrix (PWM), the frequency of each 

nucleotide at each specific position is recorded in the 

form of scores which are usually based on probabilities or 

log ratios of frequencies.  
Probabilistic approaches have been used extensively in 

motif finding. The model parameters are estimated using 

maximum-likelihood principle or Bayesian inference, 

such as Expectation Maximization (EM) algorithm [2] 

and Gibbs sampling [3]. Although employing local search, 

they are efficient and effective with genome background 

information.  
Position dependencies. Traditional PWM assumes 

nucleotide at each position is independent of each other. 

Recent researches [4], [5] show that nucleotides at 

different positions often exhibit adjacent or non-adjacent 

dependencies, and non-adjacent dependence could be 

important since three-dimensional folding of proteins, 

and binding between DNA and protein frequently involve 

interactions between nucleotides at non-adjacent 

positions within the binding sites. Such interdependencies 

within DNA motifs can also be demonstrated by TF 

binding domain information [6].  
Positional dependencies were firstly exploited in the 

signal identification problem [7], [8], [9]. There are a few 

de novo motif finding approaches taking nucleotide 

interdependencies into account. In [10], the authors 

employed Bayesian networks (BNs) to model the motifs, 

where positional interdependencies are represented by a 

directed acyclic graph (DAG) and the motif strength is 

scored by maximum-likelihood. BN suffers the problem 

of huge number of parameters which increase 

exponentially in the number of edges in the DAG. To 

tackle this problem, the authors applied more succinct 

structures and structural EM algorithm to implement 

parameter and structure learning. Note that PWM and 

Markov model are special cases of BNs.  
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Taking advantage of PWM, [11] proposed the 

generalized weight matrix (GWM) to allow pairing motif 

positions such that one position can only be paired once. 

A Markov chain Monte Carlo (MCMC)-based algorithm 

was applied to jointly sample the motif structure and the 

location of binding sites.  
Gibbs sampling. Gibbs sampling was first applied to 

motif finding by Lawrence and Liu et al. [3], [12], [13]. 

Since then, numerous enhancements have been made and 

software packages have been developed such as 

AlignACE [14], Bio-Prospector [15] and GMS [16]. In 

[15], threshold sampler is proposed to implement 

sampling multi-copies for each gene sequence. In [17], 

the number of binding site copies for each sequence was 

estimated individually and a maximum number per 

sequence was set. In [18], a neural network was used to 

define the binding energy of a TF. To score the predicted 

motifs, in [14], a measure called group specificity score 

was devised to gauge how well a motif targets the 

upstream regions of the genes used to find it relative to 

the upstream regions of all of the genes in the genome.  
Aspergillus. The Aspergilli are an important group of 

organisms, which offer a wealth of genome resources, 

including ten genome sequences. The three recently 

published Aspergillus genome sequences used in this 

study are those of A. nidulans, an important model system, 

A. fumigatus, an important opportunistic pathogen and 

allogen, and A. oryzae which is of biotechnological 

importance, playing a major role in Japanese food 

industry. We test our motif models and algorithms on 

Aspergillus and other species.  
Our contributions. We address the de novo motif 

discovery problem taking positional dependencies into 

account. Using similar ideas as GWM, we develop three 

models (and algorithms) to capture adjacent and non-

adjacent dependencies (with different scoring functions). 

We employ Gibbs sampling approach. To improve 

overall performance, we have introduced several 

modifications to the Gibbs sampling algorithm. 

Experiments are carried out on simulated and real data 

including Aspergillus’ and Tompa’s data set [19].  
The rest of the paper is organized as follows. In 

Section II, we formulate the de novo DNA motif finding 

problem, and elaborate the motif models and Gibbs 

sampling algorithms in details. In Section III, we discuss 

the experiment settings and results. Finally we conclude 

in Section IV.  

II. METHODOLOGY 

We first formulate the de novo motif finding problem. 

Consider a set of n co-regulated gene sequences S = 

{S1, ..., Sn}. Let ℓi be the length of Si and Si = ⟨bi,1, bi,2, ..., 

bi,ℓi ⟩. A binding site of width ω started at the j-th 

nucleotide of Si is denoted by si,j = ⟨bi,j, bi,j+1, ..., bi,j+−1⟩, 
where 1 ≤ j ≤ ℓi − ω +1.We denote by 

𝐴𝑖 = {𝑠𝑖,𝑗1
,  𝑠𝑖,𝑗2

, … , 𝑠𝑖,𝑗𝑘𝑖
} the set of ki binding sites in Si. 

An alignment of a motif can be represented as 𝐴 =
 𝐴𝑖

𝑛
𝑖=1 , which contains all the binding sites in all 

sequences. For simplicity, an alignment is usually 

represented as a sequence of ω  

 
(a)                                  (b)                                 (c) 

Figure 1.  (a) diPWDM. (b) triPWDM. (c) Example of diSPWDM. 

nucleotide variables ⟨X1, X2, ..., X⟩, where the nucleotide 

variable Xj is a random variable that takes one of the 

values in {A, C, G, T }.  

Given a set of co-regulated sequences, the problem is 

to find a set of motifs and the corresponding alignment. In 

Section II-A, we describe several motif models that 

capture position-dependencies in the motif. In Section II-

B, we describe the Gibbs sampling algorithm. 

A. Motif Models 

Consider a ω-mer motif. A DNA motif model is M = 

⟨θ, G⟩, where model parameter θ captures the 

probabilities of a nucleotide appearing in a certain 

position, and model structure G is a graph representing 

positional interdependencies. G contains ω nodes, one for 

each motif position. An edge between two nodes means 

interdependency of those two motif positions. Fig. 1 

illustrates the different models.  

PWM model. G contains ω nodes and no edges 

between any two nodes. The model parameter is a 4×ω 

probability matrix P. Suppose we have a ω-mer s = ⟨x1, x-

2, ..., x⟩, the probability of it being a binding site under 

the motif model M is 𝑃 𝑠 𝑀 =  𝑃( 𝑋𝑗
𝜔
𝑗=1 ) where P(Xj ) 

is a 
shorthand for P(Xj = xj), the probability of nucleotide xj 

appearing in position j. Notice that PWM assumes that 

position variables Xj and Xk are independent for any j ≠ k.  
diPWDM and triPWDM model. A possibility to 

capture positional dependencies is to combine nucleotides 

into a super-nucleotides. If we combine two adjacent 

nucleotides as a di-nucleotide, we obtain the following di-

nucleotides: {(X1,X2), (X2,X3), ..., (X−1,X), (X,X1)}. We 

call this model diPWDM, position weight model with 

dependencies for di-nucleotides. The graph structure of 

diPWDM contains ω nodes and each node has an edge to 

the next node. The probability matrix of diPWDM is a 

16×ω matrix, for 16 possible di-nucleotides. The 

probability of a ω-mer s = ⟨x1, x2, ..., x⟩ being a binding 

site under the diPWDM model M is (with Xw+1 = X1): 

𝑃 𝑠 𝑀 =  𝑃( 𝑋𝑗
𝜔
𝑗=1 ,  𝑋𝑗+1) .                   (1) 

Similarly, we define the tri-PWM model for every 

three neighbouring nucleotides. The graph structure of 

triPWDM contains ω nodes and each node Xj has two 

edges, one to node Xj+1 and one to Xj+2. The probability 

matrix of triPWDM is a 64×ω matrix. The probability of 

a ω-mer s = ⟨x1, x2, ..., x⟩ being a binding site is  

𝑃 𝑠 𝑀 =  𝑃( 𝑋𝑗
𝜔
𝑗=1 ,  𝑋𝑗+1,  𝑋𝑗+2) .              (2) 

SPWDM model. The graph structures of diPWDM and 

triPWDM models are fixed and cannot capture 

X 1 X 2 X 3 X 4 X 5

X 1,2 X 2,3 X 3,4 X 4,5 X 1,5

X 1 X 2 X 3 X 4 X 5

X 1,2,3 X 2,3,4 X 3,4,5 X 4,5,1 X 5,1,2

X 1 X 2 X 3 X 4 X 5

X 1,2 X 1,3 X 2,4 X 3,5 X 4,5
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dependencies between nucleotides located far apart. To 

tackle this problem, we adopt a similar idea as Zhou and 

Liu’s [11] that a nucleotide can be paired with another 

nucleotide in any position of the site (not necessarily a  
 

Algorithm 1 Building structure of diSPWDM model  
 

1) For each nucleotide position, set the corresponding   

node to be 0-connected.  
2) Find a pair of positions j and k which has the highest 

dependency in terms of the scoring matrix (either 

scoreχ or scoremax). Connect the two corresponding 

nodes and set them to be 1-connected.  
3) Find a pair of 1-connected and 0-connected node 

with the highest dependency score. Set them to be 2-

connected and 1-connected, respectively.  
4) Repeat Step 3 until there is no 0-connected node. 

Then we are left with two 1-connected nodes and we 

connect them to become 2-connected. 

 

neighbor). We keep the graph structure as a ring like 

diPWDM, i.e., each nucleotide position is connected to 

two other positions. The dimension of the probability 

matrix of the model parameters is the same as diPWDM, 

i.e., 16×ω. We call this model structural PWDM, 

abbreviated as diSPWDM. 

Consider the following graph structure: j1, j2, ..., j is a 

permutation of [1, ..ω] and the node Xj1 is connected to Xj2 , 

Xj2 connected to Xj3, ..., Xjω  to Xj1. Similar to Eq. (1), the 

probability of a ω-mer s = ⟨x1, x2, ..., x⟩ being a binding 

site under the diSPWDM model M is computed as 

follows (with jw+1 = j1): 

  𝑃 𝑠 𝑀 =  𝑃( 𝑋𝑗𝑘

𝜔
𝑘=1 ,  𝑋𝑗𝑘+1

) .               (3) 

⟨, G⟩ of SPWDM model. Given a set of potential 

binding sites, we determine the SPWDM model 

parameter and structure by measuring the dependencies 

of di-nucleotides. We use two criteria to score the 

dependencies: 2 score and maximal degree of 

dependency. Using these two scores, we further 

distinguish two models. We also give an algorithm to 

determine the model structure based on these two scores.  
2 score. Consider a ω-mer motif modelled by ω 

nucleotide variables ⟨X1, X2, ..., X⟩. For any two 

nucleotide variables Xj and Xk, a contingency table is a 2D 

table whose entries are the frequencies of the nucleotides 

in X = {A, C, G, T} observed at position j and position k 

in the motif. We denote this frequencies as Oj,k(·). Ej,k(·) 

denotes the expected frequencies of occurrence at 

positions j and k. For any x, y ∈ X, 𝐸𝑗 ,𝑘(𝑥, 𝑦) =
𝑓𝑗 (𝑥)𝑓𝑘(𝑦)

𝑡
 

where fj(x) is the frequency of nucleotide x appearing in 

position j and t is the total number of sites. Then 

𝑠𝑐𝑜𝑟𝑒(𝑗, 𝑘) =   
(𝐸𝑗 ,𝑘 𝑥,𝑦 −𝑂𝑗 ,𝑘 𝑥,𝑦 )2

𝐸𝑗 ,𝑘 𝑥,𝑦 𝑦∈𝑋𝑥∈𝑋  . A high 2 

score implies a strong dependency. We name this model 

diSPWDMχ.  
Maximal degree of dependency. The second score uses 

conditional probabilities: scoremax(j, k) = maxx,y∈X P(Xj = 

x|Xk = y)P(Xk = y|Xj = x) = 𝑚𝑎𝑥𝑥,𝑦∈𝑋

(𝑂𝑗 ,𝑘 𝑥,𝑦 )2

𝑓𝑗 (𝑥)𝑓𝑘(𝑦)
 . P(Xj |Xk) 

indicates the degree of Xj depending on Xk. Similar to the 

χ2 scoring, a high scoremax implies a high dependency  
 

 

Algorithm 2 Gibbs sampler to update model parameter 

and structure ⟨θ, G⟩  
 

We denote by 𝐴 =  𝐴𝑖
𝑛
𝑖=1  the alignment of motif, where  

Ai is a set of candidate binding sites in Si. 
1) Background model B is pre-computed from the 

whole genome. For each potential binding sites, 

precompute the background information under B.  
2) Initialize motif model parameter  and structure G by 

randomly selecting a set of binding sites (and the 

corresponding motif alignment A).  
3) Sampling step. Randomly select a sequence Si to 

perform sampling. For each potential binding site si,j 

on Si, compute the conditional probability P(si,j|A[−i]), 

where A[−i] = ∪j≠iAj. Then a set of sites is chosen and 

the model parameter θ is updated accordingly.  
4) Model structure G is updated based on the current 

alignment using Algorithm 1. 

5) Perform phase shifting to avoid getting locked into a 

suboptimal solution. 

6) Repeat Steps 3-5 for a preset number of rounds and 

report the motif as output. 

7) Repeat Steps 2-6 to obtain a preset number of motifs. 

 

between the two positions. We name this model 

diSPWDMmax. 

Building the model structure. After obtaining the 

dependence scoring matrix, we build the model structure 

by a greedy procedure (Algorithm 1), which tries 

obtaining as high total dependencies as possible.  

B. Gibbs Sampler 

We extend the Gibbs sampler [3], [12], [13] to update 

iteratively between motif alignment A and motif model ⟨θ, 

G⟩ until converging to a local optimal motif. In each 

iteration, we pick a sequence Si and update the model 

parameter θ based on the current alignment. Then the 

model structure G is updated. See Algorithm 2. Due to 

space limit, we only elaborate the steps with proposed 

improvement. 

Step 3. The core computation is to compute the 

predictive distribution in this step. A sequence Si is 

randomly selected and a set of candidate binding sites in 

Si is selected. The predictive distribution P(si,j |A[−i]) for 

site si,j of Si is evaluated by a weight 

𝑊𝑖,𝑗 =
𝑃(𝑠𝑖,𝑗 |𝑀)

𝑃(𝑠𝑖,𝑗 |𝐵)
 ,                              (4) 

where the site probability P(si,j|M) is computed by Eq. (1), 

(2), or (3) depending on the models, and P(si,j |B) is 

computed in Step1 and is the same for all models for a 

given motif width.  
We then sample multiple copies of candidate sites. 

Here we propose a new method to control the variability 

(or conserveness) of the predicted motif. To this end, we 

need a score to measure the degree of variability of a 

potential site against a motif, and a threshold to determine 

whether a site is selected.  
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The threshold. Let us consider the di-SPWDM with 

model parameter [px,j], for 1 ≤ x ≤ 16 and 1 ≤ j ≤ w. The 

threshold makes use of the maximum value of the j-th 

column maxx(px,j), and a parameter v, called variability 

index, to control the variability of the predicted motif. 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =   
  𝑝𝑥,𝑗 )−𝑚𝑎𝑥 𝑥 (𝑝𝑥,𝑗

16
𝑥=1  

15×𝜔×𝑚𝑎𝑥𝑥 𝑝𝑥,𝑗  

𝜔
𝑗=1  

𝑣

 .         (5) 

 Scoring. We then evaluate the variability of a site. 

This involves a user defined parameter m which indicates 

the number of sites to sample. First, we rank all sites of Si 

in decreasing order of their weights Wi,j (Eq. (4)). By this 

ranking we choose a subset with the highest weight, 

denoted as {si,1, ..., si,m}. Second, we score these sites 

from si,1. Suppose when we score si,k, the value of the 

current motif probability matrix is [𝑝1
 𝑘 

, … , 𝑝𝜔
 𝑘 

]. 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑖 , 𝑘) =  
𝑚𝑖𝑛 𝑟∈ 1,𝑘 (𝑝𝑗

 𝑟 
)

𝑚𝑎𝑥 𝑥 (𝑝𝑥,𝑗 )𝑗∈[1,𝜔]   .            (6) 

The term 𝑚𝑖𝑛𝑟∈ 1,𝑘  𝑝𝑗
 𝑟 

  means that we choose the 

minimum pj from the sites si,1, ..., si,k with weight higher 

than si,k (including si,k). This is to reduce the variability 

among the selected sites in a position specific way. A site 

is selected if its score (Eq. (6)) is above the threshold (Eq. 

(5)), otherwise the sampling on this sequence is stopped.  
Step 6. Steps 3-5 are repeated for a preset number of 

rounds. We measure the motif significance to allow 

ranking in Step 7. The measurement should reflect Wi,j 

and the number of binding sites (larger the better). We 

adopt the sum of the weights, denoted by SW-score, of all 

candidate sites. SW-score takes into account different 

model structure G (Eq. (4)). It is able to locate more true 

positive sites than traditional Information Content (IC) 

criterion [17]. 

III. EXPERIMENTS 

We use both simulated and real data for evaluation. 

The real data include the species Aspergillus, human and 

yeast.  
Algorithms tested. We test four algorithms for different 

underlying motif models. We denote the algorithms as A1 

for PWM model, A3 for triPWDM, A2χ for diSPWDMχ, 

and A2max for diSPWDMmax. The algorithms are coded 

and tested in MATLAB and the experiments are ran on a 

PC with a 2.5GHz Xeon CPU and 8GB memory.  
Statistical measurement. The performance of the 

algorithms is measured by the statistical value called 

performance coefficient (CC), which depends on true 

positives (TP), false positives (FP), true negatives (TN) 

and false negatives (FN). The formula used is described 

in [19]. The higher the value the better the algorithm is. 

A. Test on Simulated Data 

Data generation. We generate 50 gene sets each 

consisting of 20 sequences of length 500bp. These 

artificial sequences are simulated by a background 

Markov model; a 3rd-order Markov model trained from 

the upstream region of all genes of Aspergillus nidulans.  

 

 

Figure 2.  (a) Performance (CC) of A1, A3, A2max and A2χ on 

simulated data sets. Data sets include w6r, w8r, w10r, w6p, w8p, w10p, 

w8rp and w10rp. (b) Comparing algorithms with different initializations; 

A1ss (our scheme): A1 initialized by using seed sites; A1rs (traditional 

scheme): A1 initialized by using random motif alignment. The data sets 

tested include w6r[bg]([nbg]) and w8r[bg]([nbg]), where [bg] and [nbg] 

indicates predicting with and without background information, 

respectively. 

The motif width we use is 6, 8, and 10bp. We limit the 

number of nucleotide positions having nucleotide 

dependencies to be at most half of the motif width, e.g., 

2-4 for 10bp motifs. We generate three types of motifs 

based on PWM, triPWDM, and diSPWDM, denoted as 

type r, p, and rp, respectively. E.g., a w6r motif is a 

width-6 motif under the PWM model. The motifs 

generated are randomly implanted into the artificial 

sequences such that each gene set contains one motif. 

Due to space limit, we skip the details of the parameters 

used by the algorithm. 

Results. Fig. 2(a) shows the overall performance CC of 

each algorithm on different data sets. Perhaps not 

suprisingly, different algorithms perform well on 

different types of data sets, especially for the data set in 

which the implanted motif is generated under the same 

motif model. Algorithms A1 and A3 only perform well in 

the corresponding data type, i.e., r and p, respectively, 

and performance deteriorates greatly for other data types. 

On the other hand, A2χ and A2max perform the best for 

data type rp, while having reasonably good performance 

on the other data types.  

Initialization in Step 2 of Gibbs sampler. A1ss is A1 

using our seed site selection and A1rs for traditional 

random selection. We also carry out two tests, with and 

without background information for Step3 in calculating 

the weight. Fig. 2(b) shows that with no background 

information, A1ss is better than A1rs, and their 

performance is comparable with background information. 

(a) 

(b) 
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The performance with background information is much 

better than without background.  

 

Figure 3.  Comparing different motif scores; A1sw and A3sw: results 

of A1 and A3 using SW score; A1ic and A3ic: results of A1 and A3 

using IC score. Data sets tested are w6r and w8r. 

Ranking of motifs using SW-score. As discussed in 

Step 6, we rank motifs using sum of weight SW-score 

instead of Information Content (IC). We test this using 

both A1 and A3, with A1ic and A1sw means A1 with IC 

and SW, respectively (similarly for A3). Fig. 3 supports 

that ranking by SW-score is better than IC-score. 

B. Test on Real Data 

To examine the applicability of the algorithms in 

practice, we conducted tests on real data.  
Aspergillus. The Aspergillus data (A. nidulans, A. 

fumigatus, A. oryzae) include 11 co-expressed gene sets. 

Two sets are provided by our project team, while the 

others are extracted from relevant biological literatures 

[20], [21], [22], [23], [24]. The number of sequences in a 

gene set ranges from 18 to 52, and all sequences are 

upstream region of gene with length 1000 bp. The motif 

width ranges from 6 to 9 bp. The binding sites of motifs 

are localized by scanning the sequences according to the 

reported motif consensus.  
To indicate how overrepresented these motifs are, we 

introduce a quantity called motif strength, which equals 

SW(motif)/Nkbp, where Nkbp is the total number of 

nucleotides divided by 1000. We notice that it would be 

difficult to predict motifs for Asp1 and Asp7 while it 

would be easier for Asp4 and Asp5. On the other hand, it 

is indicated in the literature that for Asp11, there are 

strong mutual dependencies between nucleotides at 

positions 2, 6 and 8 within the motif.  
Results. The results are shown in Table I. The best CC 

value in each gene set is highlighted. We notice that there 

is no clear winner for all the cases, yet, for cases with 

reasonable CC value (i.e., except Asp1 and Asp7), A2χ 

achieves the highest CC for 4 out of 9 cases, while the 

other algorithm achieves the highest for 1 or 2 cases. In 

particular, for Asp11 that we mentioned above there are 

strong interdependencies among the motif, A2χ 

outperforms other algorithms (A2max performs better than 

A1 and A3 as well but for a smaller margin), supporting 

the claim that A2 is able to capture interdependencies.  
Tompa’s data set. To give a comparison with other 

motif finders, we conducted the test on the data used by 

Tompa et al. [19], which was extracted from 

TRANSFAC database, the data can be obtained at 

website: http://bio.cs.washington.edu/assessment/. The 

data consists of a total of 56 sequence datasets for 4  

TABLE I.  PERFORMANCE CC OF ALGORITHMS A1, A3, A2MAX AND 

A2 FOR 11 ASPERGILLUS DATA SETS. 

Data A1  A3  A2max  A2χ  Average 

Asp1  0.091 0.028 0.046 0.041 0.052 

Asp2  0.396 0.341 0.462 0.394 0.398 

Asp3  0.534 0.455 0.399 0.54 0.482 

Asp4  0.56 0.682 0.484 0.511 0.559 

Asp5  0.532 0.5 0.451 0.785 0.567 

Asp6  0.309 0.193 0.192 0.182 0.219 

Asp7  0.019 0.062 0.073 0.035 0.047 

Asp8  0.409 0.274 0.343 0.415 0.36 

Asp9  0.682 0.399 0.5 0.542 0.531 

Asp10  0.224 0.306 0.215 0.271 0.254 

Asp11  0.246 0.215 0.263 0.304 0.257 

TABLE II.  PERFORMANCE CC OF A2, A2MAX, MEME, ALIGNACE, 
IMPROBIZER AND MOTIFSAMPLER ON TOMPA’S DATA SET. 

A2χ  A2max  MEME  
AlignA-

CE  

Improb

-izer  

MotifSa

-mpler  

0.076 0.068 0.071 0.066 0.055 0.067 

 

different species including fly, human, mouse and yeast.  

We tested the algorithmA2χ and A2max. The test setting 

is as follows. As we do not known the motif width in 

advance, each dataset has been tested with motif width of 

6, 8, 10, 12, 14, 16, 18, 20 bp. The number of motifs to 

search ranges from 200 to 500 depending on the number 

of nucleotides of each dataset.  
The motif finders we compared to here include MEME, 

AlignACE, Improbizer and MotifSampler. MEME is 

based on EM algorithm, and AlignACE, Improbizer and 

Motif-Sampler are based on Gibbs sampler. The detailed 

test results and parameter settings for these motif finders 

can be found at website mentioned above. The 

comparison results is shown in Table II. We note that A2χ 

has slightly better performance than other motif finders. 

IV. DISCUSSION AND CONCLUSION 

In this work, we explore DNAmotif finding with 

adjacent and nona-djacent positional interdependencies. 

For adjacent interdependencies, we devise the triPWDM 

model which is capable of capturing interdependencies 

within 3 neighboring nucleotides. For non-adjacent 

interdependencies, we devise the diSPWDM model 

(diSPWDMχ and diSPWDMmax) which is capable of 

dynamically capturing pairing dependencies at any two 

positions in the motif. The strength of the dependencies 

in diSPWDMχ and diSPWDMmax is respectively 

measured by χ2 score and a score computed by conditional 

probabilities between pairing nucleotides. 

We adopt Gibbs sampling approach to sample the 

target motifs based on the defined models. For the 

diSPWDM model, a model structure updating step is 

incorporated to the Gibbs sampler so as to implement the 

model structure converging.  
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To make Gibbs sampler more efficient, we also 

provide some improvements for it, for instance, the seed 

site initialization method, to handle the seed site sampling 

space, and multi-copies sampling technique for sampling 

sites at one sequence, and a new motif scoring criterion 

for ranking the predicted motifs.  

Our experiments demonstrate the capability and 

applicability of four algorithms with different models on 

both simulated data and real data. The results show that 

the algorithms have their own strengths for predicting 

motifs under the same model as the one they are based on, 

but may perform poorly for motifs under different models. 

Among these, A2χ and A2max are able to achieve good 

performance over different type of data sets under 

different motif models, indicating this approach can be 

fruitful. We also illustrate the effectiveness of the 

improvements on Gibbs sampler.  

Comparison with other model. As introduced in 

Section I, the idea of SPWDM is similar to GWM in [11], 

where both employing dynamic model structure which 

can be updated during the sampling process. However, 

compared to the GWM model, SPWDM is able to capture 

more interdependencies between nucleotides than GWM, 

because GWM model is constructed only by pairing non-

overlapped nucleotides constraining the dependences 

between paired positions. In SPWDM any nucleotide is 

allowed to have two connections with other nucleotides, 

extending the dependencies between positions. Therefore, 

SPWDM should suffer less overfitting problem. 

Consequently, algorithms under SPWDM model are able 

to find position-dependent motifs and at the same time are 

less likely to miss random motifs. Our model structure 

updating method is also different. GWM makes use of 

MCMC Metropolis-Hastings sampling method to sample 

a group of models and select one with the largest 

posterior, while we use Gibbs sampling for model 

converging (both parameter and structure) which is 

expected to be more time-efficient than the Metropolis-

Hastings sampling method.  

In practical applications, given the motif width, 

perhaps the most difficult parameter to be decided is the 

variability index, which has a big influence on the 

predicted motifs. One option is to try out a range of 

values and see how variable the predicted motifs are, then 

select the most appropriate value within that range.  
Our tests on real data show how hard it is to accurately 

predict motifs on gene sets with a weak target motif and 

high nucleotide noise. In addition to the background 

information, we may need more biological prior 

knowledge to strengthen weak motif predicting. For 

example, ChIPchip data localizes TF binding sites to 

much shorter DNA sequences [25], [26], which in turn 

reduce the noise of data. Information about the 

phylogenetic relationship between species is increasingly 

used in de novo motif finding and makes the predicted 

motifs more biologically relevant [27], [28].We can see 

that one of the future challenges posed for this area is 

how to make full use of different kinds of prior 

knowledge to support motif discovering. 
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