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Abstract—The identification of nuclear-encoded chloroplast 

proteins is important for the understanding of their 

functions and their interaction in chloroplasts. Despite 

various endeavors in predicting these proteins, there is still 

room for developing novel computational methods for 

further improving the prediction accuracy. Here we 

developed a novel computational method called NIM based 

on interpolated Markov chains to predict nuclear-encoded 

chloroplast proteins. By testing the method on real data, we 

show NIM has an average sensitivity larger than 92% and 

an average specificity larger than 97%. Compared with the 

state-of-the-art methods, we demonstrate that NIM 

performs better or is at least comparable with them. Our 

study thus provides a novel and useful tool for the 

prediction of nuclear-encoded chloroplast proteins. 

 

 

Index Terms—Nuclear-encoded chloroplast proteins, 

interpolated Markov chains, subcellular localization, maize, 

rice 

 

I. INTRODUCTION 

The prediction of nuclear-encoded chloroplast (NeC) 

proteins is important for the annotation of plant proteins 

and for the study of chloroplast functions [1]. NeC 

proteins are proteins encoded by genes in the nuclear 

genome and perform their functions in the chloroplasts of 

plant cells (Fig. 1) [2]. MRNAs are transcribed from the 

genes encoding NeC proteins and become mature 

mRNAs in cytoplasm, which are then translated into 

proteins in cytoplasm. These NeC proteins are then 

transferred into chloroplasts from the cytoplasm (Fig. 1). 

NeC proteins are essential for chloroplast functions, such 

as photosynthesis and the production of diverse 

metabolites [3]. Although it is estimated that there are 

about 3,000 NeC proteins in a land plant species, the 

majority of NeC proteins are unknown in most of the 

plant species [2]. For instance, only 54 NeC proteins are 

annotated in maize in the Uniprot database currently. 

With the important roles of NeC proteins and the 

currently limited knowledge of NeC proteins, it is 

necessary to develop methods to discover NeC proteins in 

land plant species. 

                                                           
Manuscript received January 12, 2013; revised March 28, 2013. 

 

Figure 1.  A typical plant cell. The NeC proteins are coded by genes in 

the nuclear genome of the plant cell and transferred from cytoplasm to 

chloroplasts after being translated in the cytoplasm of the cell. 

Several experimental approaches can be applied to 

discover NeC proteins, such as tandem mass 

spectrometry experiments and visualization of fluorescent 

proteins [4]. In fact, these methods have successfully 

identified a couple of thousand putative NeC proteins in 

Arabidopsis and enable unprecedented opportunity to 

study NeC proteins in Arabidopsis [2], [4]. However, 

these experimental techniques are still costly and noisy 

[4]. It is thus necessary to develop computational 

methods to predict NeC proteins. 

A plethora of computational methods [5]-[11] have 

been developed to predict subcellular localization of 

proteins, including chloroplasts. Based on the types of 

information used for making the prediction, these 

methods can be classified into three types. The first type 

is the sorting signal based methods. The sorting signal is 

the sequence patterns in the N-terminal or C-terminal 

sequence of a protein that tells the protein to go to the 

proper subcellular locations in a cell. For instance, the 

sorting signal of NeC proteins are in the N-terminal 

sequence of the Nec proteins, because the N-terminal 

sequences of the majority of NeC proteins are necessary 

and sufficient for the NeC proteins to enter chloroplasts 

from cytoplasm [12]. These N-terminal sequences of NeC 

proteins are called chloroplast transit peptide (cTPs). The 

discovery of sequence patterns in cTPs could thus enable 

the identification of NeC proteins. The second type is the 

amino acid composition based methods. These methods 

utilize the frequency of individual amino acids or 

dipeptides (pairs of consecutive amino acids in sequences) 

to distinguish NeC proteins from other proteins. The third 

type of methods is the homology based methods, which 
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utilize the information of homologs with annotated 

localization to predict the localization of a protein.  

Despite the existence of methods for NeC protein 

prediction, more accurate computational methods are 

needed, due to the following reasons. First, the sorting 

signal based methods rarely achieve a true positive rate 

over 80% while simultaneously have a false positive rate 

of less than 10%, as shown by previous studies [13], [14]. 

Second, the prediction accuracy of the amino acid 

composition based methods is usually under 80% [14], 

[15], due to the fact that sequence patterns other than 

amino acid composition are also important for the 

transition of NeC proteins from cytoplasm to chloroplasts 

[16]. Third, the accuracy of the homology based methods 

depends on the availability of annotated homologs. Such 

homology information is often unavailable for NeC 

proteins in sequenced plant species, which prevents the 

accurate prediction based on annotated homologs.  

Here, we propose a novel computational method called 

NIM that is based on Interpolated Markov Chains (IMCs) 

[17]. NIM stands for “NeC protein prediction using IMC 

Models”. It combines the strategy of the amino acid 

composition based methods and that of the sorting signal 

based methods. By considering peptide segments of 

different lengths in cTPs using IMCs, we are able to 

effectively extract features in the N-terminal of NeC 

proteins. By testing NIM on the protein sequences from 

both the maize genome and the rice genome, we show 

that it accurately predicts NeC proteins. Compared with 

several state-of-the-art methods, we demonstrate that 

NIM works better or is at least comparable with available 

methods on these datasets. Our study thus provides an 

efficient method for predicting NeC proteins in 

sequenced plant species, in which proteins are largely un-

annotated. The NIM software tool and the datasets we 

used can be downloaded from 

http://www.cs.ucf.edu/~xiaoman/NIM/. 

II. MATRIALS AND METHODS 

A. Data 

We obtained all maize and rice NeC proteins with 

experimentally verified cTP information from the Uniprot 

Database (http://www.uniprot.org/). All obtained NeC 

proteins are annotated with direct experimental evidence. 

In total, we obtained 54 maize NeC proteins and 205 rice 

NeC proteins. For NeC proteins in maize, we randomly 

chose 30 of them for training, and used the remaining 24 

for testing. We obtained 5 groups of training and testing 

datasets. Similarly, we obtained 5 groups of training and 

testing datasets for NeC proteins in rice by randomly 

choosing 100 of them for training and using the 

remaining 105 for testing.  

In addition to the above training and testing data, we 

also obtained additional testing data as follows. 

Assuming that proteins whose annotated cellular 

locations are not chloroplasts are unlikely present in 

chloroplasts, we collected all such proteins in maize and 

rice.  We then randomly chose 200 of them as non-NeC 

proteins in both maize and rice. 

B. Markov Chains and IMCs (Interpolated Markov 

Chains) 

A Markov chain is a statistical system, in which the 

next state of the system only depends on a fixed number 

of past states. This fixed number is called the order of the 

Markov chain and the probabilities transiting from a fixed 

number of past states to the next state are called transition 

probabilities. In general, a higher-order Markov chain is 

always better than a lower-order one to predict which 

state will occur next (i.e., which amino acid will occur 

next in a cTP sequence). This is because if the states are 

generated by a lower-order chain, both the higher-order 

and the lower-order chain can predict the next state in 

exactly the same way. If the states are generated by a 

higher-order chain, the lower-order chain cannot estimate 

the transition probabilities accurately while the higher-

order chain can. In practice, however, to infer the 

transition probabilities in a higher-order Markov chain, 

one always needs a much larger number of training data 

than to infer those in a lower-order Markov chain. If the 

amount of the training data is limited, only some 

transition probabilities in the higher-order Markov chains 

can be estimated accurately and one thus needs to use 

lower-order Markov chains if a fixed-order Markov chain 

is used. In this way, the next states may not be effectively 

inferred. 

To effectively infer the next state with limited training 

data, which is the case here to predict NeC proteins with 

limited cTP sequences, we propose to develop a novel 

method based on a IMC instead of a fixed-order Markov 

chain. An IMC combines different orders of Markov 

chains to model the occurrence of a series of events, such 

as the occurrence of amino acids in a cTP sequence. 

Intuitively, with limited known cTP sequences, we could 

not obtain accurate transition probabilities for all state 

transitions in a high-order chain. This is because these 

transition probabilities are calculated based on the 

frequencies of long peptide segments in cTP sequences. 

The larger the frequencies are, the more accurate the 

estimated probabilities are. With limited cTP sequences, 

only a few long peptide segments occur enough times for 

the accurate estimation of the corresponding transition 

probabilities in the high-order chain. An IMC thus takes 

advantage of the frequently occurring long peptide 

segments, and uses the high-order chain to predict next 

state transiting from the past states represented by these 

frequently occurring long peptide segments. When some 

long peptide segments rarely occur in the training data, an 

IMC uses a low-order Markov chain to predict the next 

state from shorter peptide segments. In this way, to 

predict which amino acid to occur next in a cTP, an IMC 

combines high- and low-order chains and weight the 

predictions from different chains based on the frequencies 

of the past states in the training data.  

In detail, in an m-order IMC, the probability that an 

amino acid xi occurs after the amino acids x1 x2 x3…xi-1, 

denoted as )...|( 121 iim xxxxIMC , depends only on the 

occurrence of xi-m xi-4 xi-3 xi-2xi-1. This probability can be 

described by the weighted sum of the probabilities that xi 
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is generated by the first, second, ……, and m-th order 

Markov chains according to the following formula: 

)...|( 121 iim xxxxIMC  

)...|( 11  imimiim xxxxIMC  

)...|(Pr)...( 111 imimiimimimi xxxxxxxw   

)...|()]...(1[ 111111  imimiimimimi xxxxIMCxxxw  

In the above formula, the item )...( 11 xxxw mimi 
 is 

the weight for using the m-order Markov chain to 

calculate the transition probability from the state 

specified by
11...  imimi xxx  to the state specified by xi. 

The item )...|(Pr 1 imimiim xxxx 
is the transition 

probability from the m-order Markov chain.  

C. Model cTPs by IMCs  

To accurately predict NeC proteins, we hope to 

effectively model how cTPs in NeC proteins are 

generated. The rationale is that cTPs are necessary and 

sufficient for NeC proteins to enter chloroplasts [12]. 

Therefore, if one could model the generation of cTPs, one 

could predict NeC proteins accurately.   

To model cTPs, we calculate the weight and the 

transition probabilities in the above formula as follows. 

We count the occurrence number of all m-mers, where an 

m-mer is an m amino acid long peptide segment in the 

training cTP sequences. If an m-mer occurs more than α 

times in the training data, its weight will be 1 and the 

transition probability from this m-mer to any amino acid 

will be estimated from the training data using the m-order 

Markov chain. Otherwise, the transition probabilities will 

be calculated similarly, while the weight will be 

calculated based on chi-square test with the given 

parameter α, as in [17]. In this case, the weight will be 

smaller than one and Markov chains with different orders 

are used to estimate the probability of the next state. 

To determine α, we defined the score of each training 

cTP sequence 
nxxx ...21

 as 

1

))...|(ln(
1

11








mn

xxxxIMC
n

mi

imimiim

. In this way, the length of 

a sequence has been taken into account in calculating its 

score. We then calculate the standard deviations of these 

scores. We select α such that the scores of the training 

cTP sequences have the smallest standard deviation. The 

rationale is that cTPs in different NeC proteins should be 

similar and thus have similar scores.   

D. Predict NeC Proteins  

With the weights and transition probabilities calculated 

from the training data, we predict NeC proteins as 

follows. Given a protein, we obtain its N-terminal 

sequence of x amino acid long, where x is the average 

length of cTPs in the training data. We then calculate the 

score of this N-terminal sequence based on the weights of 

different transition probabilities. If the score is larger than 

a score cutoff, we predict this protein a Nec protein. 

Otherwise, we consider it as a non-Nec protein.  

III. RESULTS 

E. Results on Maize Proteins 

We tested NIM on the 24 maize NeC proteins. In five 

experiments, with 24 maize NeC proteins as our testing 

data, NIM identified 22 or more proteins as NeC proteins 

(Table 1). In two out of the five experiments, NIM 

predicted all 24 proteins as NeC proteins. On average, 

NIM has a sensitivity of 95.0%. We also tested NIM on 

200 maize non-NeC proteins. Only 6 out of the 200 

proteins were predicted as NeC proteins. This represents 

a specificity of 97%. Note that some non-NeC proteins 

may be NeC proteins, due to the incompleteness of 

current gene annotation.  

TABLE I.  PREDICTION RESULTS BY NIM AND OTHER METHODS. 

 54 maize NeC proteins  200  maize 

non-NeC 

proteins 

205  rice NeC 

proteins 

200 rice non-NeC 

proteins 

NIM Test1 23/24 6/200=3% Test1 99/105 3/200=1.5% 

Test2 23/24 Test2 96/105  

Test3 22/24 Test3 99/105 

Test4 23/24 Test4 99/105 

Test5 23/24 Test5 97/105 

Average 95.0% Average 92.2% 

TargetP 43/54=79.6% 6/200=3% 182/205=88.8% 7/200=3.5% 

AtsubP 

(composition 

only) 

26/54=48.1% 12/200=6% 105/205=51.2% 33/200=16.5% 

AtsubP 

(Hybrid) 

54/54=100% 12/200=6% 181/205=88.3% 11/200=5.5% 

WegoLoc 54/54=100% 1/200=0.5% 179/205=87.3% 2/200=1% 

 

We next compared NIM with one of the most widely 

used method, TargetP [9]. Since TargetP used other NeC 

proteins for training, we tested TargetP using the 54 

maize NeC proteins and 200 non-NeC proteins directly. 

TargetP predicted 43 out of the 54 NeC proteins and 6 out 

of the 200 non-NeC proteins as NeC proteins (Table I). 

Thus, NIM has a higher sensitivity and the same 

specificity as TargetP. 

Method

s 

Datasets 
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We further compared NIM with two recently 

developed methods, AtSubP [14] and WegoLoc [18]. 

AtSubP uses support vector machines to combine 

different features such as amino acid composition and 

homology information to predict protein subcellular 

localization. We tried two different versions of AtSubP. 

In the first version, AtSubP only used the amino acid 

composition information, which had a sensitivity of 

48.1% and a specificity of 1-6%=94% (Table I). The 

much lower sensitivity by using the amino acid 

composition only in AtSubP demonstrates that IMCs are 

better model to characterize sequence features than the 

simple frequencies of individual amino acids or 

dipeptides. In the second version, AtSubP used all types 

of information (hybrid), including the homology 

information. AtSubP had a sensitivity of 100% and a 

specificity of 6%. It is evident that homology information 

is the reason for the much improved sensitivity. WegoLoc 

uses the homology information and the gene ontology 

annotation to predict protein subcellular localization. 

When tested on the 54 NeC proteins and 200 non-NeC 

proteins, WegoLoc has a sensitivity of 100% and a 

specificity of 1-0.5%=99.5% (Table I). Similar to the 

hybrid AtSubP, the perfect sensitivity by We goLoc here 

may be mainly due to the known homology information 

for the testing data here. In fact, we searched the 

orthologs of the 54 maize proteins in Arabidopsis and 

found that at least 40 (74.1%) of them have been 

annotated as NeC proteins in Arabidopsis only. 

F. Results on the Rice Data 

We tested NIM on the 105 NeC proteins and 200 non-

NeC proteins in rice. In five experiments, in which 105 

rice NeC proteins are used for testing, NIM identified 96 

or more proteins as NeC proteins (Table I). On average, 

NIM has a sensitivity of at least 92.2%. We also tested 

NIM on 200 rice non-NeC proteins. Only 3 out of the 200 

non-NeC proteins were predicted as NeC proteins. This 

represents a specificity of 1-1.5%=98.5%. Both the 

sensitivity and the specificity are similar to those 

obtained on maize data. 

Similarly, we compared NIM with TargetP, AtSubP, 

and WegoLoc on the rice data (Table I). Different from 

the results on the maize data, we found that our method 

clearly shown higher sensitivity on the rice data 

compared with the other three methods. Two factors may 

contribute to the higher sensitivity in rice than in maize. 

One is that we have more training data in rice than in 

maize. Therefore, the transition probabilities and the 

weights in the obtained IMC from the rice data are more 

accurate, which results in higher true positive rate. The 

other is that there are relatively fewer rice NeC proteins 

with orthologous proteins annotated as NeC proteins. For 

instance, for the 205 rice NeC proteins, only about 108 

(52.7%) have orthologs in Arabidopsis that are annotated 

as NeC proteins, which may result in lower sensitivity of 

AtSubP and WegoLoc (based on the ortholog information 

in the Ensembl Plants database). Besides higher 

sensitivity, NIM had a comparable specificity as other 

three methods (Table I). 

IV. DISCUSSION 

We developed a novel method called NIM for 

predicting NeC proteins in plants. By testing it on maize 

and rice data, we shown that NIM is better than or at least 

comparable with the state-of-the-art methods. Our study 

thus provides a useful tool for subcellular localization 

prediction. The tool and the datasets we used are freely 

available at http://www.cs.ucf.edu/~xiaoman/NIM/. 

In this paper, we only applied NIM to predict NeC 

proteins. Since the essence of the method is to combine 

Markov chains with different orders to describe the 

common features in training sequences, it should be 

readily applicable to predict proteins in other subcellular 

localizations. In addition, we only tested NIM in maize 

and rice. Even with a small number of training data in 

maize, the performance of NIM is comparable with other 

methods. NIM will thus be useful for predicting NeC 

proteins in recently sequenced plant species [19], in 

which the majority of NeC proteins may have no 

annotated homologs. 
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